

Long-term DNAPL Source Zone Response to Bioaugmentation using Mass-flux Measurements and Push-pull Tracer Tests

Alexander Haluska
Michael Annable, Ph.D. (University of Florida)
Jay Cho, Ph.D. (University of Florida)
Charles Schaefer, Ph.D. (CB&I)

May 17, 2017

Technical Objectives

- Assess DNAPL mass quantity and composition post bioaugmentation
- Assess long-term contaminant mass flux post bioaugmentation

-1-MWS4

1-MWD4

4-1 DPC-14

SIW-01

-1 MIP-11

4-1 DPC-7

SPW-4

SMLS-6

SMLS-5

Department of Environmental Engineering Sciences

Alameda Point, CA

1 MIP-9

Scale -\Feet

4-1 DPC-10

4-1 DPC-10r

4-1 MIP-10

16

Fieldwork at Alameda, CA

Push-pull tracer analysis

- Repeated Direct Push-Pull tracer test to assess DNAPL removal
 - Nonpartitioning tracers:
 - Bromide
 - Methanol
 - Partitioning tracers:
 - o e-Hexanol
 - 2-octanol
 - 3.7 L DNAPL measured 2010

Push-pull tracer analysis

Method of Moments

Equilibrium Streamtube Model

$$\frac{C}{C_o} = \frac{1}{2} erfc \left\{ \frac{\left(\frac{V_{ext}}{V_{inj}} - 1\right)}{\left[\frac{16}{3} \frac{\alpha_L}{\hat{r}_{max}} \left(2 - \left|1 - \frac{V_{ext}}{V_{inj}}\right|^{\frac{1}{2}} \times \left(1 - \frac{V_{ext}}{V_{inj}}\right)\right)\right]^{1/2}} \right\}$$

$$S_N = \frac{R - 1}{K_{N,2} - 1 - R(K_{N,1} - 1)}$$

Requires good separation between tracers

$$\bar{C}_{non-paritioning} = 1 - \frac{C_{Non-paritioning}}{C_{0-Non-paritioning}}$$

$$\bar{C}_{TCE/DCE} = \frac{C_{TCE/DCE}}{C_{max} \text{ and } CE/DCE}$$

$$\frac{C(t)}{f_c C_s} = \frac{1}{2} \left[1 - \text{erf} \left(\frac{\ln t - \mu_{\ln \tau}}{\sigma_{\ln \tau} \sqrt{2}} \right) \right]$$

Requires immediate recovery of TCE/DCE

Push-Pull Test: SPW-4

Pre-bioaugmentation

Post-bioaugmentation

SPW-4 (No DNAPL Present)

□ Br —EST model fit △ Total TCE ---EST model fit

Push-Pull Test: SPW-3-1

Pre-bioaugmentation

Post-bioaugmentation

Well SPW-3-1

□ Br —EST model fit △ Total TCE ---EST model fit

Passive Flux Meter Technology

Retrieval wire Tube for flow bypass

Sorbent with Tracers (activated carbon/resins)

Viton Washers (minimize vertical flow)

Annable et al., ES&T, 2005

Passive Flux Meter (PFM) Concepts

Contaminant Flux Water flux

Displaced resident tracers for groundwater flux

Captured contaminants for contaminant fluxes

Hatfield et al., Journal of Contaminant Hydrology, 2004

Transect Method

$$M_D = \int\limits_A JdA$$

Units [M/T]

Mass Flux of Chlorinated Solvents

Conclusions

- ■22% decrease in DNAPL mass based on Push-pull test
- DNAPL mass shifted from TCE to cis-DCE dominated NAPL
- ■90% mass flux reduction since enhanced bioaugmentation

Future Work

- Develop monitoring technologies to measure biomass flux
- Develop numerical and analytical models to model biodegradation decay rates based on contaminant mass flux rates

Acknowledgements

- This project is funded by ESTCP ER-201428
- ■Tim Ault (CB&I)
- Kenneth Lee (CB&I)
- Dr. Fang Wang (University of Florida)