Tetra Tech

Ott/Story/Cordova Superfund Site

complex world

CLEAR SOLUTIONS"

Outline

- Project Introduction
- Site History
- Goals of the Investigation/project
- High Resolution Site Characterization
- Investigation Results
- Next Steps for 2017

Project Introduction – Site Location

A Former Specialty Organic Chemical Production Facility that operated from about 1957 to 1985.

- Manufactured:
 - Pharmaceutical Intermediates
 - Veterinary Medicines
 - Agricultural Chemicals
 - Herbicides
 - Dyestuffs, and Others.

Waste by-products from the chemical manufacturing processes were placed in unlined lagoons or stored in drums on the property.

Principal Contaminants of Concern

- Vinyl Chloride
- Tetrachloroethene (PCE)
- Trichloroethene (TCE)
- Toluene
- Benzene
- 1,1-Dichloroethene (1,1-DCE)
- 1,2 Dichloroethane (1,2-DCA)
- 1,1,1-Trichloroethane

Site divided into 3 operable units (OU)

OU1 (ROD signed 1989)

 Installation of 11 extraction wells to protect downgradient stream and to restore the aquifer to drinking water quality

OU2 (ROD signed 1990)

- Construction and operation of Groundwater Treatment Facility (GWTF) and extraction wells
- 1996 GWTF started treating contaminated groundwater
- Collect quarterly groundwater samples

Site History – Site Layout

Site History – Site Layout

OU3 (ROD signed 1993, amended 1999)

- Primary remedial goal was to reduce downward migration of contaminants in soils and reduce human health and the environment associated with exposure to contaminated soils
- Excavated and disposed offsite approximately 16,000 tons of soil in the source area to just above shallow groundwater depths (approximately 4-5 feet)
- Demolished unusable structures
- Collected confirmatory samples after excavation

Contaminant

Cleanup

(ft bgn)

aurfece

nurfect

aurface

surface

surface surface

surface

surface

surface.

surface

Concentration

(ser/ser)

Area of Cessoon	Contaminant	Concentration (up/kg)	Cleanup Criteria	Degth (ft kgs
foresation			V25510000	
	Totrachizzoethese:	3,100	100	- 5
ixcuration	Area B Processions areas			-
	Totradiorosthese	750	1.00	3
Incresting		rau	200	- 2
Distantian.	Carbon Extraction de	120	100	5 and
	Totrachicroethere	970	100	2
rotanacion	Area f	1000000	- 9300	0.76
	1, 2-CECN graberzene	23,000	14,000	- B
	1,5-Octroscueruses 1,6-Octroscueruses	330	400	0.7
	1, 6-Dick or oternoese	2,100	1,700	- 5
	Echylburcone Gentler Violet	2,366 150,000	1,500	4.5
	au.p-0 viene	11,000	1,300	8.5
	o-Nylene	45.000	5,800	6
	Toward Consentence	1,100	100	4.5
	Totrachloroethene 3, 1, 1 Trabloroethene	5,000	4,000	18
lectestion	Area G3		0.10	11000
7000	Arodor-1241	70	26	2
acception	Area I	100 100		
	Arodor-1248	350	20	6
	Banania 1,2-Bith arsethene	520 460	100	3
	Tytrashlarusthana	460 310	110 100	2
beartles		867	400	
	Pecachionobespane	1,900	1,800	unknoy
	Tetrachicroethere	1,400	100	LERIYON
occustion	Area K	The state of	10000	1000
	1, 2-Dichronaethune	3,800	100	2
	Pexachionaisespene	4,300	1,800	3.6
	Totrachiomethese.	7,495	100	3
	Trichleroethere	150	100	- 7
incaration	Area L Fetrachismethese	1.20	100	-
		1,300	100	- 2
incavation	Tetrachicroethese	490	100	25
faravitina.	Area 92			1.360
branties	ADENIA.	15,000	1181	- 2
	Condenses That manifely an olive	6,600	100	2
	1,2-Dichlorsethane	9,800	100	- 2
	Tetrachiproethete	2,000	100	
	Trichloroethere	340	100	2
	1, 1, 1-Yeichlorgethane	7,500	4,500	3
	3.1.2 michlorgethane	15.000	100	- 2
man Man	Total Xylen as Excession Area I & K	17,900	5,500	-
STATE STATE	But some	15,000	100	2
	Carbon Tistraction de	6,800	100	1
	1,2-Dichlorgethane	6,800	100	- 3
	Totrachiproethese	2,000	100	2
	1.1.1 Trichlorouthane	7,900	4,000	- 2
	1, 1, 2-Trichloroethane	15,000	100	.2
	Trichbroothere	17,500	100	- 2
	Fotal Xylenes	17,900	5,600	- 1
lower Near	Excavation Area A 1,7-Octooractions	950	100	1 5
	Tutrachiorosthera	990	100	3
Lenwar Mann	Exceuation Area F	399	100	- 2
	1.8 Och oraberanse	820	490	6.5
	1,4-fücklorobergese	1,900	1,700	4
	Gentler Violet	82,000	1,900	- 6
	fotrachicroethene	1,800	100	9.5
	1, 1, 2-7richloroethine	170	1.00	9.5
	1,2,4-Immethylbostene	3,700	7,100	6.5
	1.3.5 Trimethylbourne	4,100	1,800	4.5
	Forcal Xyline os	13,700	5,600	6.5
-Product	Storage Arma	\$80	100	surface
	1,2-Dich groothane Tetrachioroethane	1,000	100	surfac

Environmental Issues/Goals of Investigation

- Characterize the nature and extent of contamination of the source area and downgradient areas
- Evaluate whether sources exist that may continue to impact the effectiveness of the site remedy
- Review and assess potential additional remedial technologies

Where to Start?

- Reviewed Over 20 Years of Data
 - Site Geology
 - Analytical Data
- Conducted 3D Visualization and Analysis
- Determined Data Gaps
- Conduct High Resolution Site Characterization (HRSC) to resolve data gaps
- Conduct 3D Visualization and Analysis (3DVA) to determine nature and extent of contamination

Review of Historical Data - Site Geology

Review of Historical Data – 3DVA

Review of Historical Data – 3DVA

Review of Historical Data - Groundwater

Analysis

etra lech

High Resolutions Site Characterization

Design Site Investigation

- Initial Investigation Focused on Source Area
- Transect based approach
- MIP (Membrane Interface Probe)
- Waterloo APS (Continuous Vertical Profile)
- Onsite Mobile Laboratory
- Real- Time Decisions
- 3D Visualization and Analysis

Field investigation performed in three phases:

- Phase I Fall 2014 (MIP and Waterloo)
- Phase II Summer 2015 (Additional Waterloo)
- Phase III Spring 2016 (Deep VAS)

Legend

MIP Transect

Source Area Investigation

Phase I and II Investigation Summary

- Conducted MIP at 13 locations to primarily set edges of Waterloo transects
- Conducted Waterloo profiling at 52 locations collecting over 1,000 groundwater samples and generating 52 continuous Index of Hydraulic Conductivity (relative IK) geologic logs
- Analyzed all groundwater samples with an on-site mobile laboratory

Phase I and II Investigation Summary

Phase III Investigation Summary

- Paired up with 4 Waterloo boring locations to conduct deeper VAS using sonic drilling and packer sampling to collect soil and groundwater samples from discrete depths
- Collected soil samples at discrete depths at 4 additional Waterloo boring locations
- Conducted field screening for NAPL using visual observations, PID, and field test kits (Oil-in-Soil shake tests)

Phase III Investigation Summary

Tetra Tech

Summary of Field Investigation Activities Site Geology Results

Summary of Field Investigation Activities Contamination Results

Nature of Contamination:

- Numerous organic compounds detected in groundwater including chlorinated ethenes, chlorinated ethanes, aromatic hydrocarbons, and other "miscellaneous" compounds (aniline, THF)
- Parent as well as degradation compounds were detected

Extent of Contamination:

- Contamination was detected in groundwater samples throughout OU3 and in the samples from transects located south of Agard Road
- The presence and extent of contamination varies for each compound (not a single release event/location)

Summary of Field Investigation Activities Contamination Results Continued

Magnitude of Contamination:

- Concentrations detected were well above groundwater restoration criteria
- Typically, very high dissolved-phase concentrations were detected
- Some chemicals were present in dissolved-phase samples at concentrations greater than 1% of their solubility (toluene, 1,2-dichlorobenzene, 1,1,1-TCA, PCE)

Waterloo Analytical Data

Chemical	Maximum Concentrations	Location	Depth, Feet	MCL	1% of Solubility (possible NAPL)
	ug/L			ug/L	ug/L
1,1-DCA	5,270	WL-10	88	7	50,400
1,1-DCA	9,040	WL-09	88	7	50,400
1,1,1-TCA	12,800	WL-09	88	200	12,900
1,1,1-TCA	16,400	WL-10	88	200	12,900
TCE	2,370	WL-08	55	5	12,800
PCE	4,340	WL-08	55	5	2,060
PCE	1,340	WL-45	18	5	2,060
1,2-DICLOROBENZENE	1,630	WL-14	25	N/A	1,560
1,2-DICLOROBENZENE	2,500	WL-34B	50	N/A	1,560
1,2-DICLOROBENZENE	2,530	WL-34	30.2	N/A	1,560
1,2-DICLOROBENZENE	3,150	WL-48	34.5	N/A	1,560
Trans-1,2-DCE	96	WL-32	77.5	100	54,200
VC	36,700	WL-03	124.4	2	88,000
1,1-DCE	1,160	WL-03	124.4	7	64,100
1,1-DCE	1,020	WL-10	88	7	64,100
TETRAHYDROFURAN	3,600	WL-41	130	N/A	10,000,000
CHLOROBENZENE	3,670	WL-33B	41.1	100	4,980
CHLOROBENZENE	4,030	WL-33C	45.1	100	4,980
BENZENE	1,130	WL-04	118.4	5	17,900
BENZENE	1,200	WL-23	154	5	17,900
BENZENE	1,280	WL-33B	46.7	5	17,900
BENZENE	1,530	WL-23	156.7	5	17,900
1,2-DCA	20,000	WL-23	154	5	86,000
1,2-DCA	24,100	WL-23	156.7	5	86,000
TOLUENE	57,400	WL-46	30.3	1,000	5,260
TOLUENE	58,400	WL-33C	40.1	1,000	5,260
TOLUENE	137,000	WL-33A	150.2	1,000	5,260

Benzene Above 100 µg/L

Nature and Extent of Contamination

34

23

19

B

0

Concentration (Congr (ng/1)	Renzene 275		
0 - 5			
5 - 49	168		
50 - 99	53		
100 - 249	56		
250 - 499	25		
600 - 999	12		
1,000 - 24,999	5		
25,000 - 49,999	0		
50,000 - 99,999	0		
>100,000	0		
Sample population	1004		

Concentration Banga (ng:L)	1,1,1-Trichioroethane		
0 - 5	42		
6 - 49	20		
50 - 99	3		
100 - 250	4		
250 - 749	4		
750 - 999			
1,000 - 24,999	9		
25,000 - 49,999	0		
50,000 - 99,999	0		
>100,000	0		
Sample population	1004		

Nature and Extent of Contamination Continued

Tetra Tech

Nature and Extent of Contamination Continued

Nature and Extent of Contamination Continued

Summary of Findings

Dissolved-Phase Groundwater:

- Multiple contaminants are present
- Lateral and vertical extent varies by compound
- Contaminant pattern is indicative of multiple releases in many areas
- Higher dissolved-phase groundwater concentrations were generally detected just above low hydraulic conductivity (clay) zones
- Contamination does not appear to extend vertically below the lower clay

Summary of Findings Continued

NAPL Assessment:

- Direct evidence of NAPL was not observed
- Indirect evidence shows potential for NAPL to exist (dissolvedphase greater than 1% solubility for some compounds)
- Back-diffusion from low hydraulic conductivity zones appears to be the predominant process "feeding" the dissolved-phase plume
- Results are indicative of a late-stage release where backdiffusion is greater than NAPL dissolution
- Given size of source area and depth of contamination, the potential exists for small pockets or localized areas of NAPL to be present.

Planned Activities for 2017

OU3 Source Area:

Perform mass distribution analysis

Downgradient Plume:

- Conduct additional VAS using HRSC methods
- Potentially supplement HRSC with sonic methods, if necessary

Site-Wide:

- Input downgradient sample results and Relative IK data into Earth Volumetric Studio (EVS)
- Expand 3D Visualization and Analysis (3DVA) to incorporate source area and downgradient results

Follow-up Activities

- Optimize extraction wells and monitoring network
- Identify potential remedial technologies for the site
- Assess effectiveness of potential technologies given site conditions

Questions?

Kristi Schuldt

Tetra Tech

Environmental and Water Resource Engineer

Kristi.Schuldt@TetraTech.com (409) 795-1996

John Fagiolo

U.S. EPA Region 5

Superfund Division

Fagiolo.John@epa.gov (312) 886-0800