Use of a ¹⁴C Assay to Determine Rates of TCE Co-oxidation in Groundwater

James Mills and David L. Freedman (Clemson University)

John T. Wilson (Scissortail Environmental Solutions, LLC)

Todd H. Wiedemeier (T.H. Wiedemeier & Associates, Inc.)

Background

TCE biodegradation includes

- Reductive dechlorination
 - Tools to document are well developed
 - ➤ Daughter products
 - ➤ Molecular
 - > CSIA
- Aerobic co-oxidation
 - Tools to document are less developed

Background

Oxygenase enzymes

- Require oxic conditions
- Add oxygen atom(s) to compounds
- Mono- and dioxygenase varieties

Co-oxidation of TCE

* Substrates may include: methane, natural organic matter (e.g. humic acids), ethene, vinyl chloride, BTEX

Background

Approaches to document aerobic co-oxidation

- Molecular (fast)
 - qPCR for specific oxygenases
 - o qPCR for oxygenase expression
- Enzyme assay for specific oxygenases (fast)
- ¹⁴C assay to determine rate constants (more time consuming)

Strength of correlation?

Gene abundance, Gene expression, Enzyme activity

Research Objective

- Develop ¹⁴C assay to detect firstorder rate constants from groundwater samples
- Reasons to develop ¹⁴C assay
 - In situ concentrations difficult to measure
 - Sensitivity of ¹⁴C signal above background levels [‡]
 - More complete mass balances

carbon-13 1.1% 6 protons 7 neutrons

carbon-14<0.1%6 protons8 neutrons

¹⁴C Assay

Controls:

- Distilled deionized (DDI) water
- Filter-sterilized groundwater (FSGW)

Total ¹⁴C:

Determine total ¹⁴C in bottles

Total ¹⁴C products:

¹⁴C-TCE = → ¹⁴C-TCE Epoxide → ¹⁴C-Products

- Removed 3 mL aqueous samples
- Raised pH > 10 using NaOH to retain $^{14}CO_2$
- Sparged samples for 30 min with N₂

End-of-incubation products:

- Precipitated ¹⁴CO₃-² using Ba(OH)₂
- Determined percent ¹⁴CO₂

Method to Purify ¹⁴C-TCE

Gas Chromatograph

First-Order Modeling

Background Methods Results Conclusions

Positive Controls

- Groundwater from natural source
- Collected at seep near Twin Lakes Recreation Area in Pendleton, SC
- Used to validate ¹⁴C assay with natural groundwater
- $k = 0.024 \text{ yr}^{-1}$
- $t_{1/2}$ = 29.0 yr

Positive Controls

Propanotrophic Culture

- Cultured from ENV487 (courtesy CB&I)
- Known to degrade TCE using oxygenase enzymes
- Grown in basal salts medium
- Used to validate ¹⁴C assay

Dilution	t _{1/2} (yr)
25 %	0.010
2.5 %	0.068
0.25 %	0.62
0.025 %	4.0

Results: TCAAP, MN

Results: Plattsburgh AFB, NY

Results: Hopewell, NY

Results: Tooele, UT

Results: Hill AFB, UT

¹⁴C Product Distribution

Conclusions

- ¹⁴C assay provides quantitative evidence for aerobic TCE co-oxidation; provides rate constants that can be used as a second line of evidence to assess MNA
- Capable of predicting first-order constants for TCE degradation as low as $0.0066 \text{ yr}^{-1} = \text{half-life up to } 105 \text{ yr}$
- $^{14}\mathrm{C}$ product distribution was 37-97% $^{14}\mathrm{CO}_2$ with remainder as soluble products

Conclusions

Next presentations

Enzyme activity probe response:

Brady Lee

Gene abundance and expression:

Dora Ogles-Taggart

Application to abiotic degradation:

John Wilson

Contaminant plume, plume, Plattsburgh AFB

Acknowledgments

ESTCP ER-201584

Dr. David Freedman

Dr. John Wilson

Todd Wiedemeier

Questions?

