

TCE Co-oxidation Rates and Quantification of Oxygenase Gene Abundances & Expression

ESTCP Project ER-201584

ESTCP Project ER-201584

- Follow-up to ER-201129
 - Highlights the importance of all degradation mechanisms
 - Furthers management expectation tool (BioPIC)
- MNA Support w/ Quantitative Lines of Evidence for
 - Abiotic Degradation
 - Cometabolic Oxidation

Plume Behavior

Impact of Degradation Rate Constant

Aerobic Cometabolism of Chlorinated Ethenes

Aerobic Cometabolism of Chlorinated Ethenes

Aerobic Cometabolism of Chlorinated Ethenes

Methane Monooxygenases (sMMO) Toluene Monooxygenases (RMO & RDEG) Phenol Hydroxylase (PHE) Toluene Dioxygenase (TOD)

Aerobic Cometabolism

- Primary substrate and oxygen
 - Supports growth
 - Induce oxygenase gene expression
- For MNA...
 - Primary substrate as co-contaminant
 - Primary substrate present at plume fringe
 - Naturally occurring substrate
 - TCE induces oxygenase expression during growth on alternative substrate

Primary Substrate - Plume Fringe

Aerobic Cometabolism

- Primary substrate and oxygen
 - Supports growth
 - Induce oxygenase gene expression
- For MNA...
 - Primary substrate as co-contaminant
 - Primary substrate present at plume fringe
 - Naturally occurring substrate
 - TCE induces oxygenase expression during growth on alternative substrate

Humic Acid - Naturally Occurring Substrates

en.wikipedia.org/wiki/Humic_acid

Aerobic Cometabolism

- Primary substrate and oxygen
 - Supports growth
 - Induce oxygenase gene expression
- For MNA...
 - Primary substrate as co-contaminant
 - Primary substrate present at plume fringe
 - Naturally occurring substrate
 - TCE induces oxygenase expression during growth on alternative substrate

Experimental Plan

Water samples from 5 unique sites (T.H. Wiedemeier & Associates, Scissortail Environmental)

¹⁴TCE Co-oxidation Rate Studies (Clemson)

The Sites

qPCR Targets

Name	Target Genes	Natural Substrate	Induction by TCE ?
RMO	Toluene-3-monooxygenase Toluene-4-monooxygenase	BTEX	Yes
RDEG	Toluene-2-monooxygenase	BTEX	Yes
PHE	Phenol hydroxylase	Phenol	
TOD	Toluene dioxygenase	BT	Yes
sMMO	Soluble methane monooxygenase	Methane	No

RDEG Concentration & TCE Co-oxidation Rate

PHE Concentration & TCE Co-oxidation Rate

PHE Concentration & TCE Co-oxidation Rate

PHE Concentration & TCE Co-oxidation Rate

Impact of Degradation Rate Constant

RMO Concentration & TCE Co-oxidation Rate

sMMO Concentration & TCE Co-oxidation Rate

sMMO Concentration & TCE Co-oxidation Rate

Using Prediction Intervals

Exceptions – PHE but no significant degradation

Caveats

Limiting factors

- Carbon catabolite repression
- Competitive inhibition
- Oxygenase inactivation
- Cellular toxicity
- Reductant availability (NADH)
- Co-oxidation rates
 - Detection of iron

Conclusions

- qPCR is a good second line of evidence
 - Screening co-oxidation as a possible mechanism
 - Compare to rate constants determined from other information (e.g. computer models)
 - RT-qPCR (mRNA) did not provide better correlations

Conclusions

- Recommended Assays
 - PHE (phenol hydroxylase)
 - RMO (ring hydroxylating toluene monooxygenase)
 - sMMO (soluble methane monooxygenase)

Acknowledgements

- Environmental Security Technology Certification Program (ESTCP)
- Dr. John Wilson

Questions???

>

2