Use of Two-Dimensional Gas Chromatography to Supplement the Evaluation of Natural Attenuation at Petroleum Release Sites

Catalina Espino Devine, P.E., M.Sc.
Lead Engineer

Battelle Symposium
Miami, FL
May 24, 2017
Presentation Overview

1. Project Objectives
2. Theoretical Background and Analytical Protocol (4)
3. Case study
4. Conclusions
5. Acknowledgements
6. References
Project Objectives

• Evaluate petroleum biodegradation by GCXGC-TOF-MS technology and study how important it is at sites with historical releases
• Present a case study on the application of the technology and interpretation of the results consistent with the multiple lines of evidence approach to evaluate Natural Attenuation

Key points:
• GCXGC-TOF-MS is a cutting edge tool to show natural attenuation/biodegradation is occurring.
• GCXGC-TOF-MS is an (expensive) tool in the toolbox that may not be needed for the majority of petroleum release sites.

TOF-MS - Gas Chromatography by gas chromatography, time of flight, mass spectrometry.
Quick Theoretical Background: What is Extractable TPH?

“TPH” is not total, not only petroleum and not only hydrocarbons

TPH is defined by the method

- TPH has been measured by very different analytical methods that quantify in different ways petroleum hydrocarbons as well as non-hydrocarbons as a bulk “TPH” concentration. Results depend on the solvent used, type of detector and fuel standard.
- Non-hydrocarbons (polars) are compounds with oxygen, sulfur and/or nitrogen
- Non-hydrocarbons can be separated from hydrocarbons in the extractable TPH by a silica gel cleanup step (e.g. EPA Method 3630c; SGC)

ITRC TPH Team expected to publish TPH guidance in 2018

- TPH is a measure of extractable organics.
- TPH methods vary across different regulatory jurisdictions, labs and methods.
- SGC can separate the polar from the hydrocarbon fraction
- Non-hydrocarbons = NSO compounds = Polar compounds

TPH – Total Petroleum Hydrocarbons
NSO compounds – Nitrogen, Sulphur and Oxygen containing compounds
“TPH” plumes measured as Extractable TPH in groundwater and natural attenuation

1. Upgradient from HC plume: TPH = Background organics + Naturally occurring organics + Background anthropogenic contamination + Lab/sampling artifacts

2. Dissolved HC plume: TPH = + HC + HC metabolites + Background organics

3. Dissolved metabolites from HC biodegradation: TPH = + HC metabolites + Background organics

4. Downgradient from HC metabolite plume: TPH = + Background organics

LNAPL – Light Non Aqueous Phase Liquids
HC – Hydrocarbons
NSO compounds – Nitrogen, Sulphur and Oxygen containing compounds
Collection of groundwater samples from monitoring wells from 16 fuel terminals and 5 service station sites with biodegrading sources and shrinking/stable plumes

Extraction (3) with DCM (EPA Method 3510)

Silica gel cleanup (EPA Method 3630)

Extract (hydrocarbon + polars fraction) DRO Method 8015 & Method 8270C

Methanol eluate from the SGC (polars fraction)

Three extracts and one methanol eluate analyzed by GCXGC-TOFMS (Mohler et al., 2013)

All extractable organics and organics in the SGC were tested by GCXGC-TOF-MS

SGC – Silica Gel Cleanup
Collection of groundwater samples from monitoring wells from 16 fuel terminals and 5 service station sites with biodegrading sources and shrinking/stable plumes

Extraction (3) with DCM (EPA Method 3510)

Silica gel cleanup (EPA Method 3630)

Extract (hydrocarbon +polars fraction) DRO Method 8015 & Method 8270C and GC-MS Targeted Search

Methanol eluate from the silica gel column (polars fraction)

Three extracts and one methanol eluate analyzed by GCXGC-TOFMS List of TIC classified by:

- Molecular family
 - Alcohols/diols
 - Acids/esters
 - Ketones
 - Aldehydes
 - Phenols

- Molecular structural class
- Name, chemical formula
- Oxygen, carbon and hydrogen ratios
- SMILES designation

TIC – Tentatively Identified Compounds with a similarity number >750
(Zemo et al., 2016)
GCXGC
SMILES - Simplified Molecular Input Line Entry System
SGC – Silica Gel Cleanup

GCXGC –TOFMS result gives you compound family/structural class identification
GCXGC results: detections, not concentration
Case Study

- Former oil field ~2800 acre site at the Pacific Ocean shoreline
- Oil field operations from late 1940s to early 1990s
- Historical releases of a mid-distillate product (C10-C28) and heavy crude
- Active remediation and LNAPL recovery has been conducted at several locations of the site
- TPH in unconfined aquifer is evaluated under MNA

- MNA evaluated with multiples lines of evidence, in a tiered approach.
 1. Concentration in GW vs. time (TPH w/wo SGC)
 2. Geochemistry (not shown here)
 3. GCXGC-TOFMS for metabolites in groundwater, soil and LNAPL
TPH without SGC in Groundwater
(191 monitoring wells)

TPH (mg/L)
0.05 – 0.5 0.5 – 1.0 1.0 – 2.5 LNAPL

TPH – Total Petroleum Hydrocarbons
SGC – Silica gel cleanup by EPA Method 3630
TPH with SGC in Groundwater

- 54% of the samples with TPH detections were non-detect (<50 ug/L) with TPH with SGC
- TPH concentrations with SGC showed more than 85% were polars

Dissolved “TPH” plume is mostly metabolites

TPH (mg/L)

- **0.05 – 0.5**
- **0.5 – 1.0**
- **1.0 – 2.5**
- ![LNAPL](symbol)

© 2017 Chevron
TPH w/o SGC - trends in Transect 1

Historical Groundwater Elevation and TPH

TPH w/o SGC is a poor metric of biodegradation

TPH: mg/L
Groundwater (GW) Elevation: feet above mean sea level
GCXGC data - approx. % TIC in Transect 1

HC biodegradation occurring across the flow path

TPH/TPHwSGC (ug/L)

- 5000 / 620
- 4900 / 420
- 400 / <50

Alcohols Acids/Esters Ketones Aldehydes Phenols

TPHwSGC – Total Petroleum Hydrocarbons with Silica Gel Cleanup
Most downgradient wells show complete HC biodegradation.

TPH/TPHwSGC (ug/L)

260 / <50
210 / <50
320 / <50
1400 / 79
400 / <50
620 / <50

GCXGC data - % TIC in Transect 2

Alcohols Acids/Esters Ketones Aldehydes Phenols

67% 33% 33% 33% 0%
67% 33% 33% 33% 0%
50% 50% 50% 50% 50%
50% 50% 50% 50% 50%
34% 33% 33% 33% 33%
Soil Biodegradation

• Results from 24 soil samples show samples with higher % Polars have a higher % of less biodegraded metabolite classes
Interior LNAPL attenuation

• **3 out of 4 samples** - The n-alkanes have been completely removed, and only the isoprenoids remain as resolvable peaks.

• **1 out of 4 samples** - The 2014 sample has lost the C11-C13 n-alkanes; and the nC17/Pristane and nC18/Phytane ratios are slightly lower than in 1995.

Note – Chromatograms and GCXGC results by % TIC detections after Zemo, 2016

© 2017 Chevron
Conclusions

• Biodegradation of petroleum hydrocarbons occurs in groundwater, soil and LNAPL phases. GCXGC-TOF-MS is a tool that can show natural attenuation/biodegradation.
 – GCXGC-TOF-MS can provide family and structural class information relevant for toxicity evaluation

• Biodegradation indicators are useful: Biodegradation indicators (higher presence of acids/esters and alcohols) are present in LNAPL and are more prevalent in the outer edges of the plume (metabolite plume vs. source zone).

• SGC can help evaluate natural attenuation:
 – The difference between TPH without SGC and TPH with SGC is a good indicator of polars (non-hydrocarbons) load in soil and groundwater.
 – SGC can serve to evaluate naturally occurring organics and background and lab/sampling contamination.
Co-Authors and Acknowledgements

• Renae Magaw, MPH and Rachel Mohler PhD - Chevron
• Dawn Zemo, MS, PG, CEG - Zemo & Associates
• Kirk O’Reilly PhD, Asheesh Tiwary PhD, DABT, DVM and Sungwoo Ahn PhD – Exponent

• Karen Synowiec – retired

• Research funded by Chevron Environmental Management Company
• Consulting and field work conducted by Padre Associates, Inc.
Thank you

Questions?

espino@chevron.com
References

