Identification of Natural Attenuation Mechanisms of Hexavalent Chromium in Groundwater through Geochemical and Matrix Diffusion Evaluations

Bioremediation and Sustainable Environmental Technologies *The Fourth International Symposium – Miami, Florida* Michael Lamar, P.E.

May 2017

Site Summary

History

- Former ammunition site with chromic acid cleaning
- Chromic acid discharged to unlined settling lagoons
- Lagoon material removed (overburden only)
- Cr⁶⁺ concentrations
- > 10,000 μ g/L beneath and immediately downgradient of former lagoon
 - Elevated Cr⁶⁺ concentrations NW and S/SW of former lagoon
 - Up to 1,000 µg/L outside lagoon
 - Plume migration not generally downgradient flow direction
 - Up to 3,000 mg/kg in discrete limestone samples beneath former lagoon

Site Summary, cont.

Lithology (beneath lagoon)

- Overburden 0 4 ft bgs
- Weathered limestone 4-9 ft bgs
- Competent limestone 9-13 ft bgs
- Weathered shale 13-15 ft bgs
- Competent shale 15 35 ft bgs
- Limestone pinches out to west

Contaminant Plume (red arrow)

- NW from lagoon
- S/SW from lagoon

GW flow direction (blue arrow)

- Generally west
- Low GW velocity

Observed Cr⁶⁺ concentration plume

Project Objective

Objective – Identify natural attenuation mechanisms for hexavalent chromium (Cr⁶⁺) in weathered/fractured limestone and shale

- Methods Build a robust conceptual site model using:
 - Geophysical survey, core sampling, discrete interval well sampling
 - Electron microprobe (EMP)
 - X-ray diffraction (XRD)
 - Leachate testing
 - Metagenomics (biological reduction)
 - Modeling using PHREEQC (1D transport)
 - Bedrock matrix diffusion (not discussed)

Geophysics / Core / Discrete GW Sampling Results

•

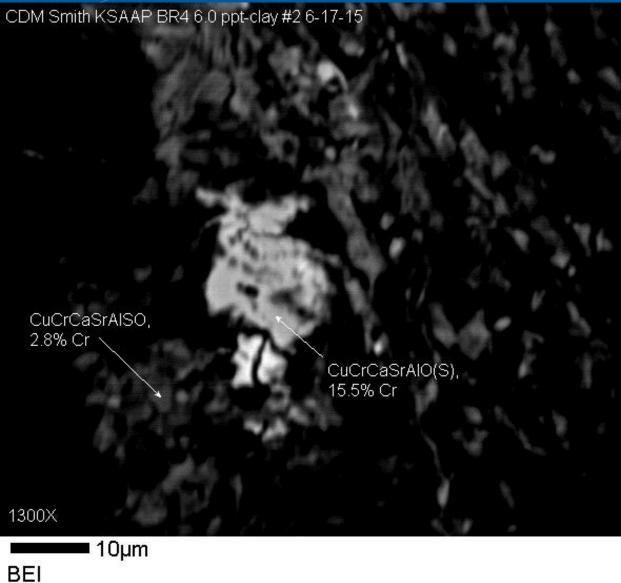
Above – precipitates on core Below – fractured core

- Fractures in competent limestone had low Cr⁶⁺ concentrations
- Limestone-shale interface had elevated Cr⁶⁺ concentrations
- Flow tests (HPFM) during geophysics indicate low flow rates in existing fractures
 - Unknown precipitate found in areas with highest observed Cr⁶⁺ concentrations (as high as 40 mg/L)
 - Cr⁶⁺ in shale very low highly reduced

Back diffusion likely not a primary factor in groundwater Cr⁶⁺ concentrations. New focus is precipitate material.

Electron Microprobe (EMP)

- Can view samples at 300,000X magnification
- Can analyze particles as small as 2 μm in diameter
 - Can determine the forms (mineralogy) of Cr, and other metals
 - Cr oxidation state (+3 vs +6) can be determined by the stoichiometry if the phase is not hydrated and the oxidation state of iron can be assumed.

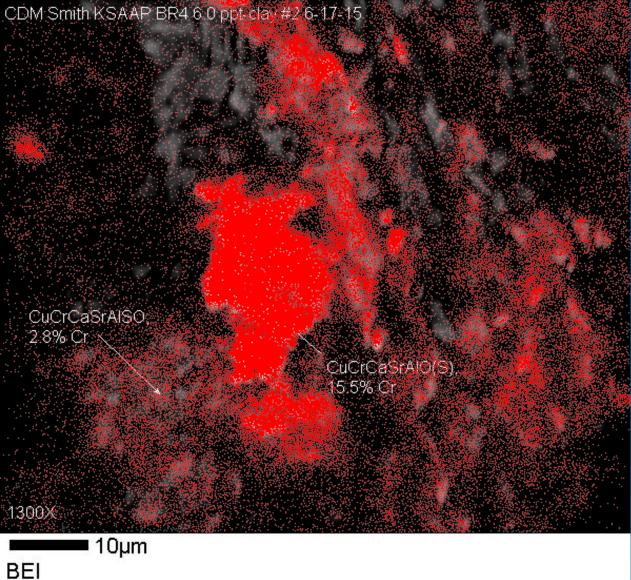

CuCrO₄

Hexavalent Chromium

> Red = CrBlue = SiPink = O

Cu-Cr Silicate

Hexavalent or Trivalent Chromium


CuCrO₄

Hexavalent Chromium

> Red = CrBlue = SiPink = O

Cu-Cr Silicate

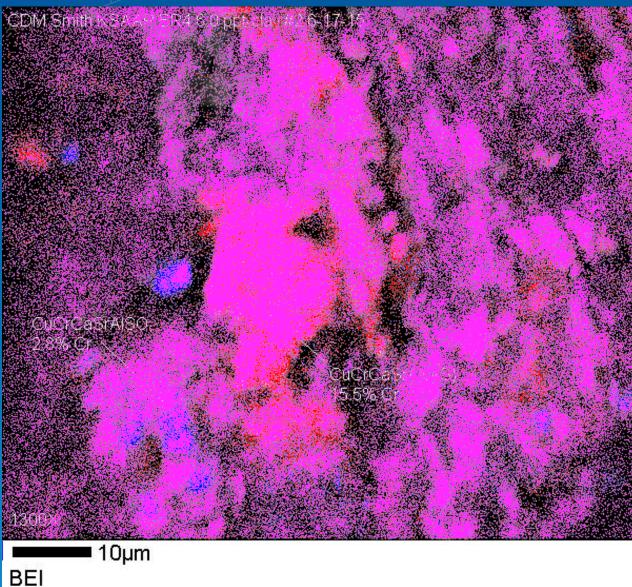
Hexavalent or Trivalent Chromium

CuCrO₄

Hexavalent Chromium

> Red = Cr Blue = Si Pink = O

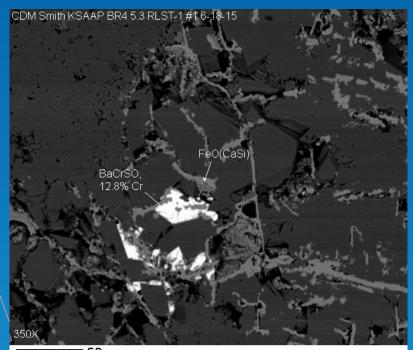
Cu-Cr Silicate Hexavalent or Trivalent Chromium



CuCrO₄

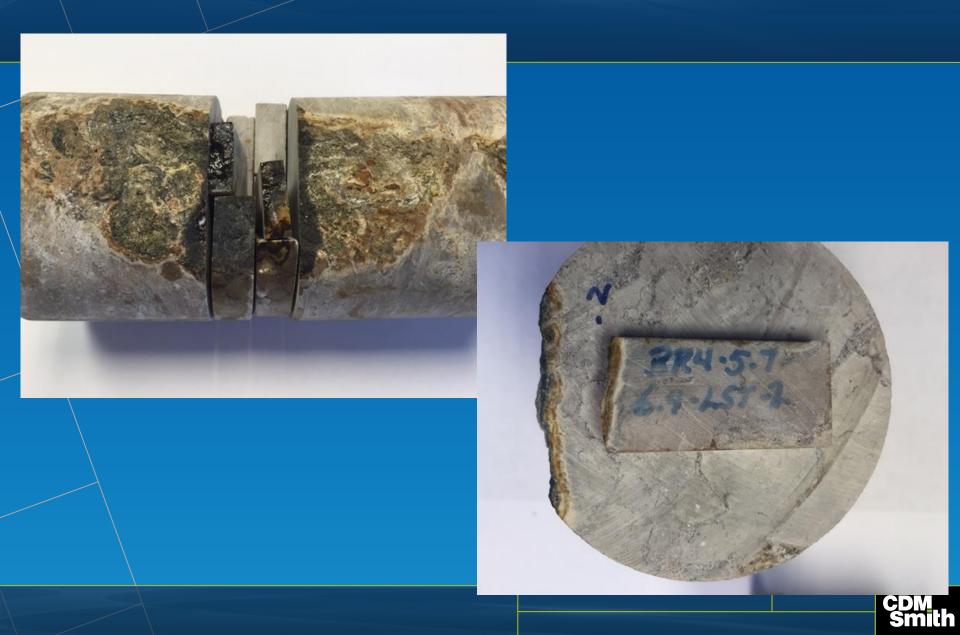
Hexavalent Chromium

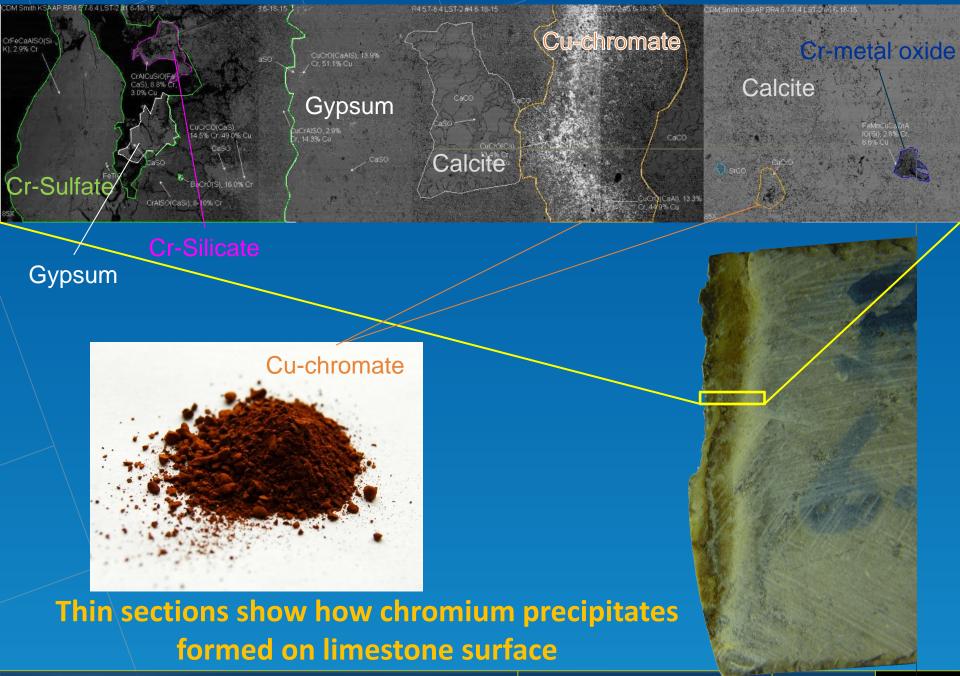
> Red = Cr Blue = Si Pink = O


Cu-Cr Silicate Hexavalent or Trivalent Chromium

Cr-Substituted Barite

- Hexavalent chromium
- Pure barium chromate (BaCrO4) contains 29% Cr


BEI



50µm

BEI

Precipitate Sample Thin Section

Summary of EMP Results

Beneath former lagoon

- Secondary precipitates: copper chromate (6 to 13% Cr), barium chromate (2 to 22% Cr), Al-Cr silicates (6 to 20% Cr)
- Layers of precipitates including chromium compounds and gypsum in highly weathered material
- matrix chromium: Cr substituted jarosite (6 to 12% Cr); Cr substituted iron oxides (0.09 to 0.14 % Cr)

Outside of lagoon

Could not find or identify Cr phases in matrix limestone
Secondary precipitates: FeCr oxyhydroxide (10-12%, Cr3+)
Shale: mainly iron sulfide with Cr (1%), some barium chromate (18% Cr)

Solubility and XRD Confirm EMP Findings

Solubility of copper chromate matches observed groundwater concentrations

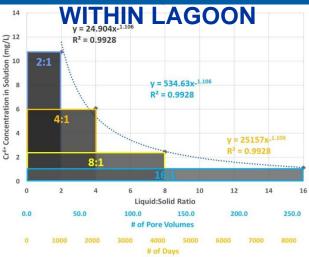
- Lab solubility tests on basic copper chromate (reagent grade)
 - 170 to 259 mg/L Cr⁶⁺ (depending upon pH)
 - PHREEQC Modeled log(K_{sp}) = 11.48

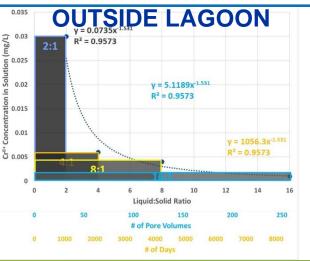
 Lab tests on secondary precipitate from site precipitate sample using site groundwater (no chromium)

• 22.7 to 245 mg/L Cr⁶⁺ (depending on liquid to solid ratio)

 X-Ray diffraction (XRD) test results confirmed the presence of basic copper chromate and other minerals (hashemite, ferrihydrite) found in EMP

> Copper chromate precipitates control groundwater concentration


Geochemistry – Groundwater Leaching Tests


- Leaching tests were performed to understand Cr⁶⁺ release mechanisms into groundwater
 - Better understand the fate and transport of Cr⁶⁺ in the groundwater and solid matrices
 - Results show:

0

- Source material is present in bulk samples both within and downgradient of former lagoon
 - Cr⁶⁺ concentrations as high as 350 μg/L and 2,500 μg/L may be present in groundwater in contact with the chromate precipitates downgradient of lagoon
- > 100 µg/L Cr⁶⁺ plume likely to remain > 200 years

Metagenomics

- Comprehensive evaluation can identify and quantify microbial populations key to reducing hexavalent chromium
- Results indicate both aerobic and anaerobic bacteria are present to support biological reduction of hexavalent chromium
 - Under observed aerobic conditions
 - Pseudonomads present able to aerobically reduce Cr⁶⁺
 - High populations of iron-reducing bacteria present under aerobic conditions – these may compete with abiotic Cr⁶⁺ reduction
 - Under observed anaerobic conditions
 - Diverse population of bacteria present capable of reducing Cr⁶⁺
 - However, under anaerobic conditions, geochemical conditions alone should result in Cr⁶⁺ to Cr³⁺
 - Bacterial population likely assisting in Cr⁶⁺ reduction

Geochemical Modeling

- PHREEQC model used to compare field results with anticipated equilibrium concentrations
- Field concentrations generally lower than anticipated based on solubility
 - This is likely due to dilution from mixing with vertical intervals that do not have precipitates (10-ft screened wells)
 - Discrete vertical zones with precipitates had concentrations approaching solubility (0.5-ft screened CMT interval)
 - Model shows again that soluble phase controls groundwater Cr⁶⁺ concentration

1-D Modeling

- 1-D transport model developed based on PHREEQC results
 - 1-D results do **not** match current conditions
 - Groundwater mounding during lagoon operation likely caused impacted groundwater to flow radially from lagoon
 - Plume migration occurred south via density driven flow in limestone-shale interface and weathered limestone

Observed Cr⁶⁺ concentration plume

Natural Attenuation Summary

- Groundwater Cr⁶⁺ is solute controlled by precipitates, not diffusion controlled
 - Cr⁶⁺ plume will likely remain (> 200 years) unless precipitates are removed
 - Cr⁶⁺ in shale attenuating under reduced conditions in presence of carbon
- Southern extent of plume not expanding
 - No southern gradient
 - Western gradient migrates to shale
- Northwestern extent of plume also not expanding

Also migrating into shale Natural attenuation keeping plume stable. However, without precipitate removal elevated Cr⁶⁺ concentrations will remain > 200 years

Revised CSM

Thank you! Any questions?

Contact Information Michael Lamar CDM Smith Inc. Email: <u>lamarmr@cdmsmith.com</u> Ph: 303-383-2461

Michael Lamar, P.E.

