UCPM Environmental

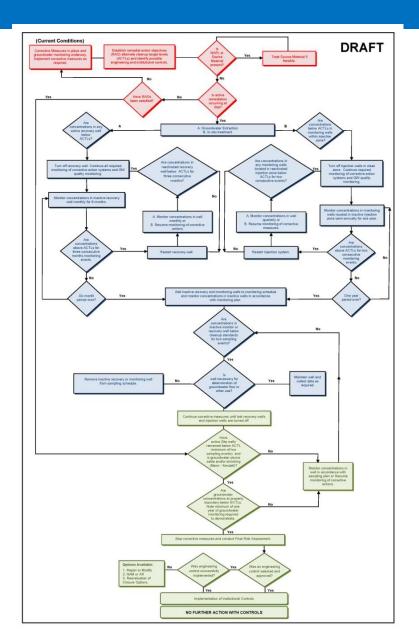
Demonstrating Plume Stability to Support Risk-based Closure

Ed Meyers, P.G.

UCPM Facility -1997

UCPM Facility -1997

Site Remediation – Meeting EPAs GPRA Goals


Direct Exposure / Source Removal

Hydraulic Control

Remediation Exit Strategy

- Source Removal
- Establish Remedial Goals / ACTLs
- Groundwater Treatment
- Reduce Contaminant Concentrations
- Identify milestones to stop treatment
- Post Active Remediation Monitoring (PARM)
- Risk Assessment
- Demonstrate Plume Stability
- Site Closure

Sources: Chapter 62-780 FAC ITRC – Enhanced Attenuation of Chlorinated Organics (April 2008)

Plume Stability and Site Closure

Post Active Remediation Monitoring

...designated monitoring wells shall be sampled **<u>quarterly</u>**, or at a frequency specified in the Post Active Remediation Monitoring Plan approval, for analyses of contaminants that were present prior to the initiation of active remediation.

FDEP requirements for risk based closure

Chapter 62-780 ...demonstrated to the Department by a minimum of <u>1</u> <u>year</u> of groundwater monitoring data and, if applicable, fate and transport modeling results, that the groundwater contamination will not ...impact fresh or marine surface water body and...

- (RMO II) ...is not migrating from a localized source area...
- (RMO III)...at the institutional boundary does not and will not exceed the appropriate cleanup target level...

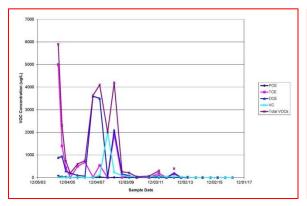
Plume Stability - Questions

How do you know contaminant reductions have occurred and not just observing dilution?

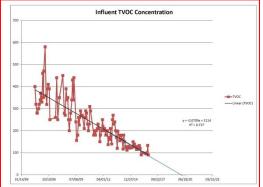
Will rebound occur?

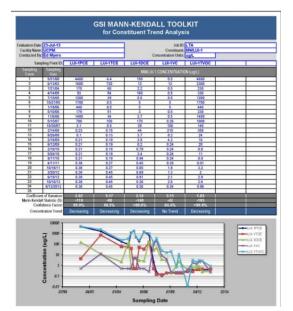
How long for the system to reach equilibrium following remediation?

Will the remnant plume migrate and cross property boundaries?


Where's the plume?

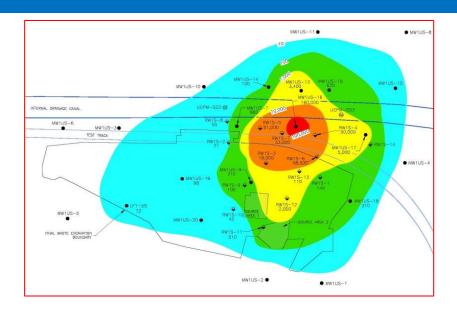
Plume Stability

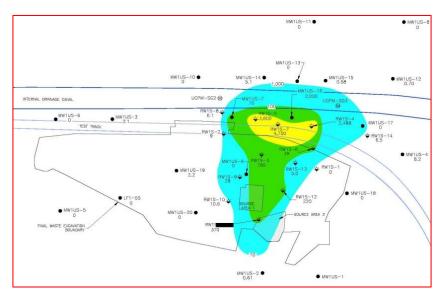

Every annual remedial action status and PARM report includes:


- Concentration vs. time trend analysis graphs for all impacted wells
- Plume foot print figures and plume area discussion
- Mann Kendall analysis
- Mass removal estimates
- Groundwater flow velocity

Monitoring Well Data

Treatment Plant Data

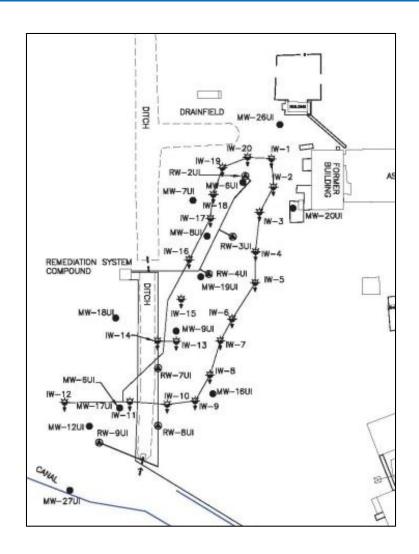




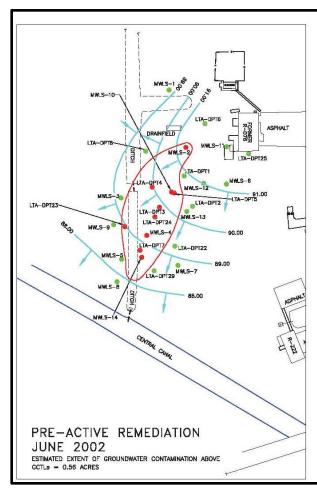
Plume Stability

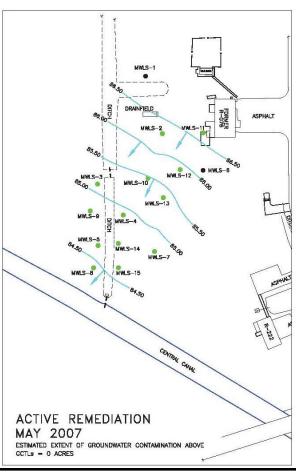
Other lines of evidence used at UCPM:

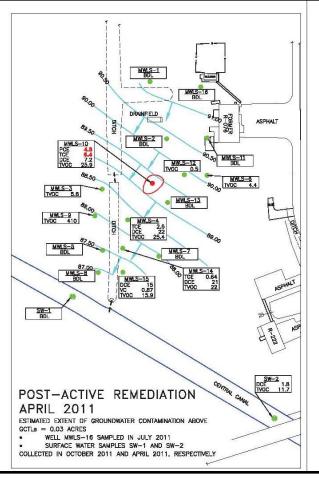
- Biochlor
- MAROS
- Stable isotopes
- MNA Parameters



Example 1 - SWMU-59

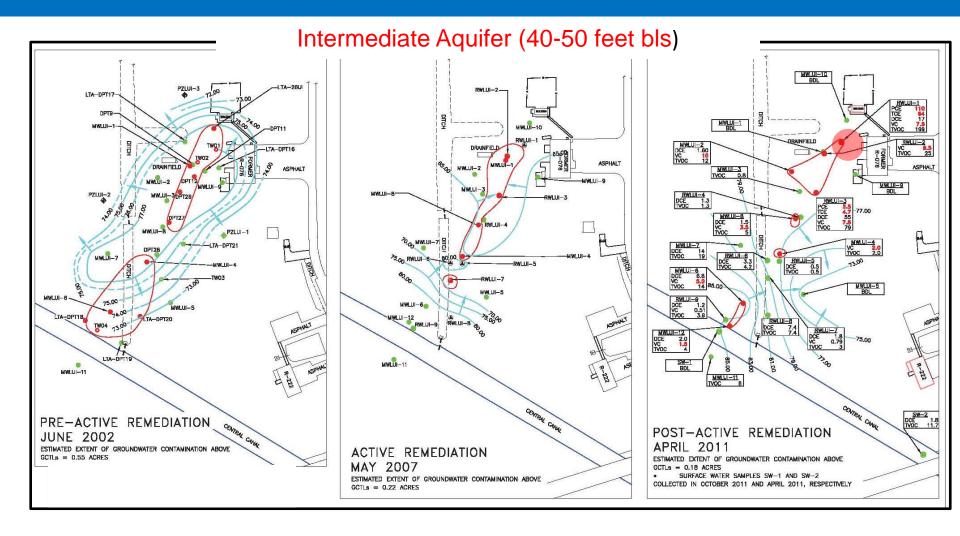

- Former Missile Component Testing Facility
- Active from 1960's to 1995
- Treatment Train Approach
 - Septic Tank Source Removal
 - Air Sparge
 - P and T
 - Bioremediation


	Pre-Remedial Concentration (ug/)	PARM (ug/)
PCE	4,400	40
TCE	4,400	37
DCE	150	15



SWMU-59- Qualitative Estimation

Surficial Aquifer (0-25 feet bls)

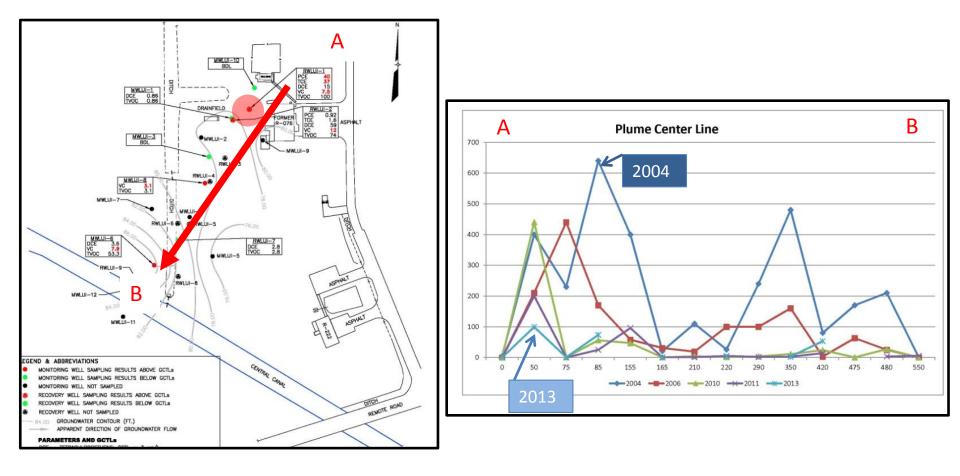


Pre-Remediation June 2002

Active Remediation May 2007

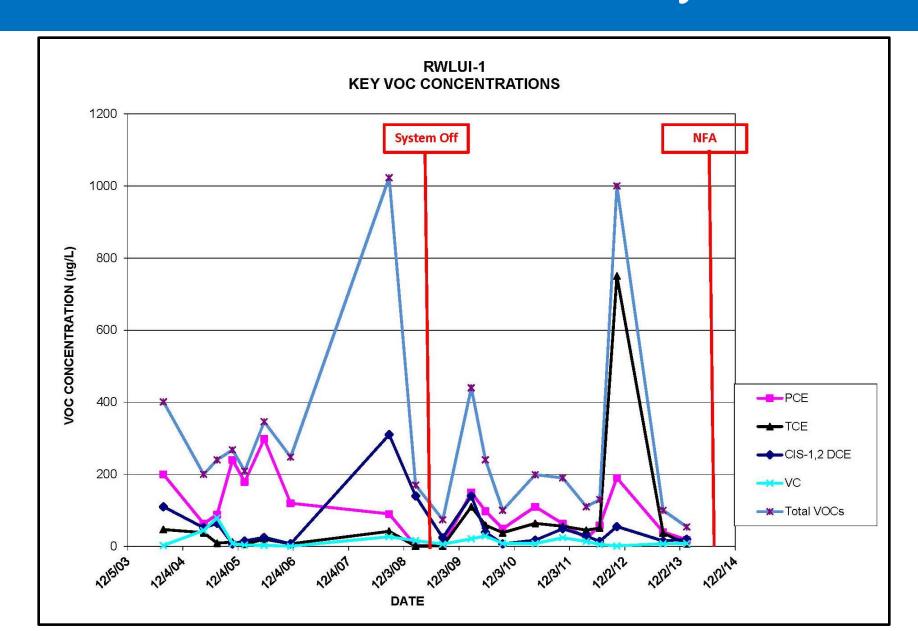
PARM April 2011

SWMU-59 - Qualitative Estimation



Pre-Remediation
June 2002

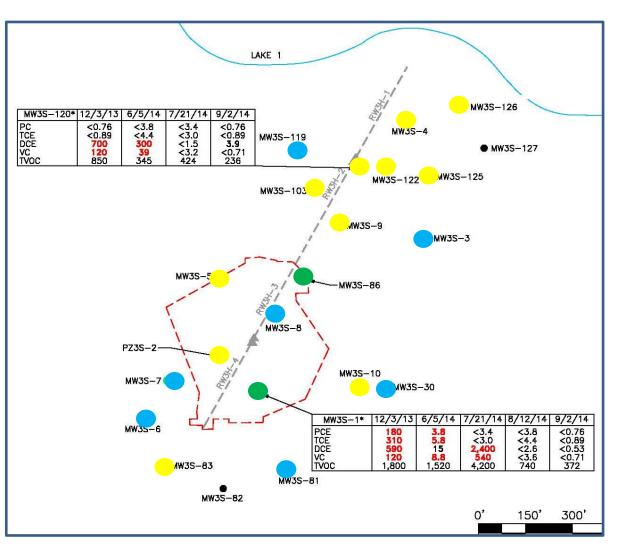
Active Remediation May 2007


PARM April 2011

SWMU-59 - Mass Movement

Decreasing VOC concentrations confirm stable center of mass

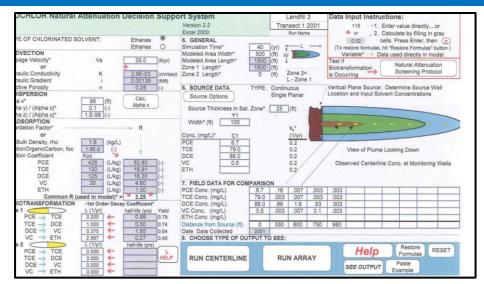
SWMU-59— Trend Analysis

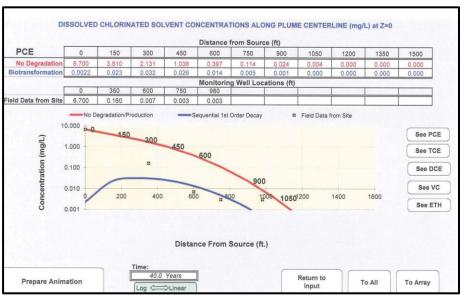

Example 2 – Landfill 3

- Former Industrial Landfill
- Active 1960,s
- Treatment Train Approach
 - Landfill Excavation
 - P and T
 - Large Scale ISCO

	Post - Excavation Concentration (ug/)	PARM (ug/)
TCE	68,000	310
DCE	40,000	700
VC	<500	120
TVOC	120,000	1,800

Landfill 3 – Mann-Kendall


PARM - 2013


- Increasing / Probably Increasing
- No Trend / Stable
- Decreasing / Probably Decreasing
- All Parameters BDL

FDEP Concerns:

- Elevated concentrations at 2 locations:
- K evaluation
- Limited hot spot polishing
- Extend PARM period 2 quarters

Landfill 3- BIOCHLOR

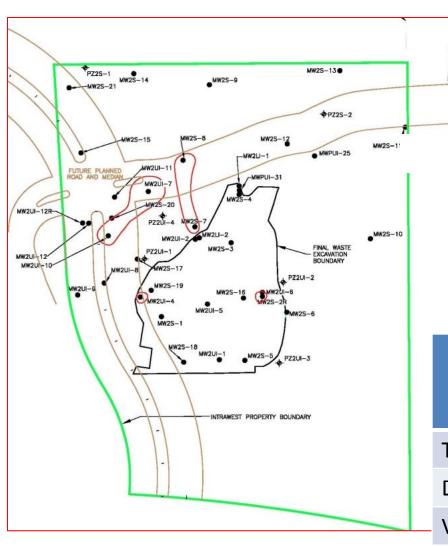


BIOCHLOR used to:

- Estimate decay coefficients prior to remediation
- Demonstrate that contaminants present following remediation will decrease below GCTLs in less than 50 years
- Estimate distance that plume attenuates to below GCTLs – using different estimates of hydraulic conductivity
- Verify that the plume will be below GCTLs before surface water body and Intuitional Control boundary

BIOCHLOR EPA 2002

Landfill 3 – BIOCHLOR



Low K Transport distance

High K Transport distance

IC Boundary

Example 3 – Landfill 2

- Former Industrial Landfill primarily used for electroplating sludge
- Treatment Train Approach
 - Landfill removal
 - Bioremediation

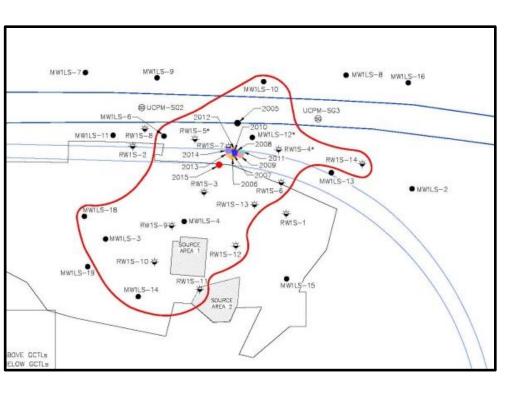
	Pre-remedial Concentration (ug/)	PARM (ug/)
TCE	330	7.0
DCE	180	4.9
VC	ND	6.8

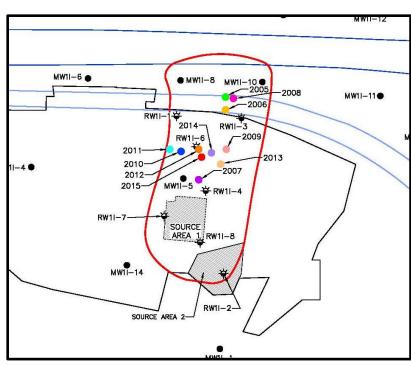
Plume Stability – MAROS

TABLE 14

MAROS Statistical Trend Analysis Summary for Lauch Test Area
Universal Boulevard Planned Development

WellID	Number of Samples	Number of Detections	Median (μg/L)	Average (µg/L)	MannKendall Trend	LinearRegression Trend ¹
cis-1,2-Dichloroethene (DCE)						
MWLUI-1	19	13	30	2.4	NT	PD
MWLUI-2	19	17	17	4	NT	PD
MWLUI-3	17	11	7.5	1	D	D
MWLUI-4	19	17	47	24	D	D
MWLUI-5	15	9	20	0.62	D	D
MWLUI-6	19	19	28	11	D	D
MWLUI-7	19	19	16	12	D	D
MWLUI-8	19	15	28	5.7	D	D
MWLUI-9	17	2	7.4	0.5	PD	PD
MWLUI-10	18	0	0.49	0.5	ND	ND
MWLUI-11	17	0	0.49	0.5	ND	ND
MWLUI-12	17	17	44	33	D	D
RWLUI-1	14	14	68	32	NT	D
RWLUI-2	13	12	52	15	D	D
RWLUI-3	15	15	34	18	NT	NT
RWLUI-4	12	12	14	14	D	D
RWLUI-5	11	8	2.5	0.61	D	D
RWLUI-6	12	12	25	19	D	D
RWLUI-7	15	15	64	26	D	D
RWLUI-8	12	4	1.5	0.5	NT	NT
RWLUI-9	13	13	14	10	D	D
			Tetrachloroethene	(PCE)		
MWLUI-1	19	11	630	93	D I	D
MWLUI-2	19	0	1.4	1.5	ND	ND
MWLUI-3	17	1	1.4	1.5	S	PD
MWLUI-4	19	0	1.4	1.5	ND	ND
MWLUI-5	18	0	1.4	1.5	ND	ND
MWLUI-6	19	0	1.4	1.5	ND	ND
MWLUI-7	19	1	1.4	1.5	S	PD
MWLUI-8	19	0	1.4	1.5	ND	ND
MWLUI-9	17	0	1.4	1.5	ND	ND
MWLUI-10	18	4	1.4	0.5	D	D
MWLUI-11	17	0	0.49	0.5	ND	ND
MWLUI-12	17	0	1.4	1.5	ND	ND
RWLUI-1	14	14	120	100	S	PD
RWLUI-2	13	9	120	110	D	D
RWLUI-3	15	15	32	6	D	D
RWLUI-4	12	1	3.5	1.5	PD	D
RWLUI-5	11	0	1.4	1.5	ND	ND
RWLUI-6	12	0	1.4	1.5	ND	ND
RWLUI-7	15	1	3.9	1.5	NT	D
RWLUI-8	12	0	0.49	0.5	ND	ND
RWLUI-9	14	0	1.5	1.5	ND	ND

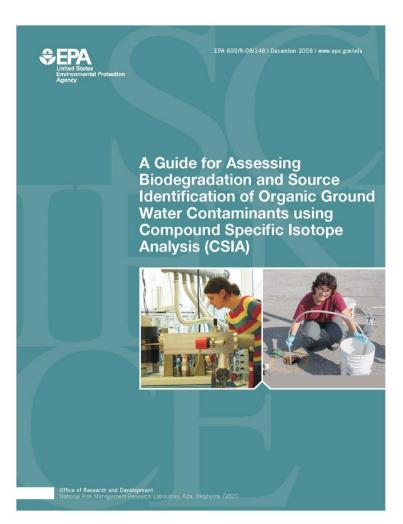

MAROS - Monitoring and Remediation Optimization System (MAROS)

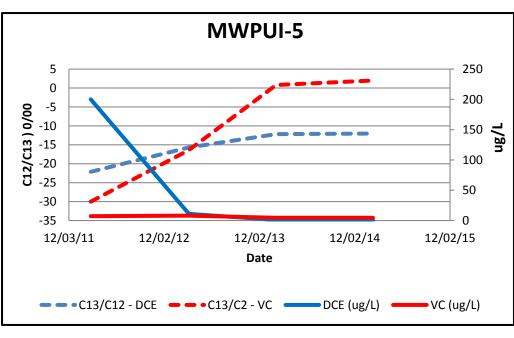

Developed by AFCEE to optimize a site-specific monitoring program

Calculates center of mass and provides estimates of dissolved phase mass

Plume Stability – MAROS

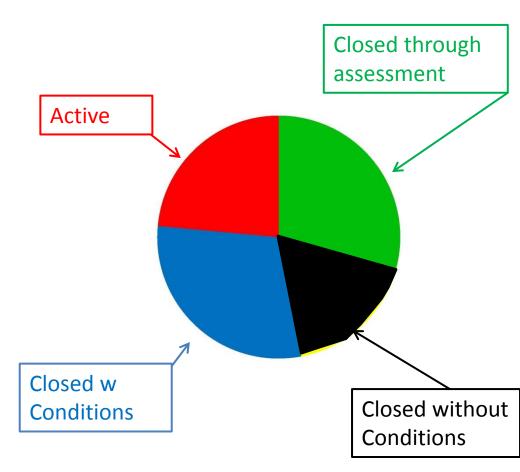
Center of Mass Estimation

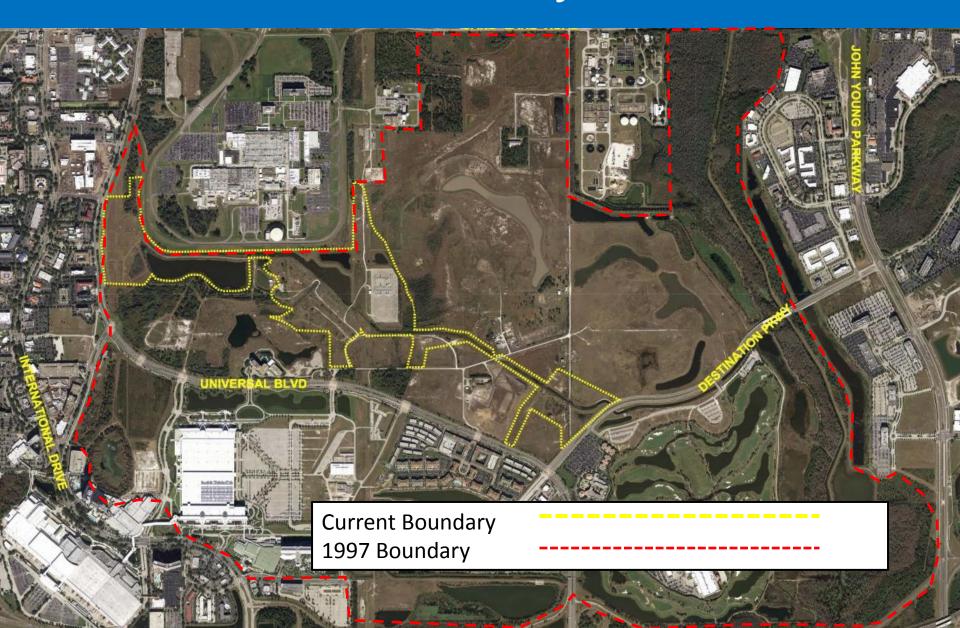

Lower Surficial Aquifer


Intermediate Aquifer

Estimated center of mass

Plume Stability – CSIA




Verification of contaminant degradation

Current Facility Status

- 5 Sites removed from permit following assessment
- 3 Sites closed without conditions (RMO I)
- 5 Site closed with conditions (RMO II)
- 4 Sites remain in active remediation

UCPM Facility -2017

Conclusions

Site	Active Remediation	PARM	NFA /Closure	Contaminants Remaining
Landfill 2	2002 - 2007	2007-2010	2011	TCE – 30 µg/L VC – 8 µg/L Cd – 3 µg/L Fe– 59,100 µg/L Ni – 162 µg/L
Landfill 3	1985 - 2012	2012-2014	2014	TCE - 5 μg/L VC - 62 μg/L
AOC R	2005 - 2006	2006 - 2008	2009	TCE - 16 μg/L
Launch Test Area	2004 - 2009	2009-2013	2014	PCE – 88 μg/L TCE – 76 μg/L VC – 15 μg/L
Ordnance -2	2004 - 2006	2006 - 2011	2011	Al – 33,500 μg/L Fe – 18,000 μg/L

Conclusions

- Multiple lines of evidence to demonstrate plume stability
- Majority of data collected during long-term monitoring and post active remediation
- Statistical analysis completed using publically available software
- 3 years average time in PARM / plume stability evaluation
- FDEP's evaluation of plume stability based on contaminant concentration in groundwater samples
- Future lines of evidence may include mass flux/discharge and fate and transport modeling

UCPM Environmental

Thank You

Ed Meyers
UCPM Environmental
emeyers@thomasent.com
321 662 8824