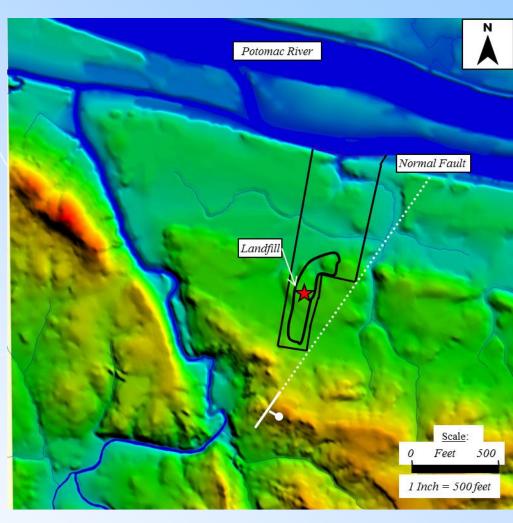
In-Situ Enhanced Biological and Chemical Reduction Pilot Study of TCE in Complex Fractured Bedrock

Prepared for:


The Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies May 2017

Prepared by:

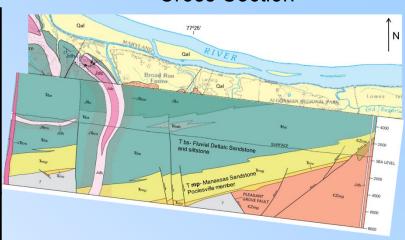
Former VA Landfill Superfund Site, EPA Region 3

- RI/FS and Treatability Studies
- Contaminants of Concern: TCE
- Project Highlights
 - 25-acre former disposal facility in Loudoun County
 - Aged TCE release from landfill into subsurface within fractured siltstone bedrock
 - TCE detected in residential drinking water wells in adjacent subdivision
 - Maintenance response for whole house water treatment in homes with contaminated wells
 - RI/FS to be completed in 2017

-Base Map from USGS 10-meter Digital Elevation Model (DEM) Data, Global Mapper Overlay, Sterling Quadrangle, 1968

Conceptual Site Model

Hydrogeology


- Water table present at bottom of overburden
- Hydraulically interconnected overburden and bedrock
- Bedrock primary porosity roughly 2-4%
- Bedrock secondary (fracture) porosity = 1-15%
- Groundwater flow direction north
- Average hydraulic gradient = 10⁻³

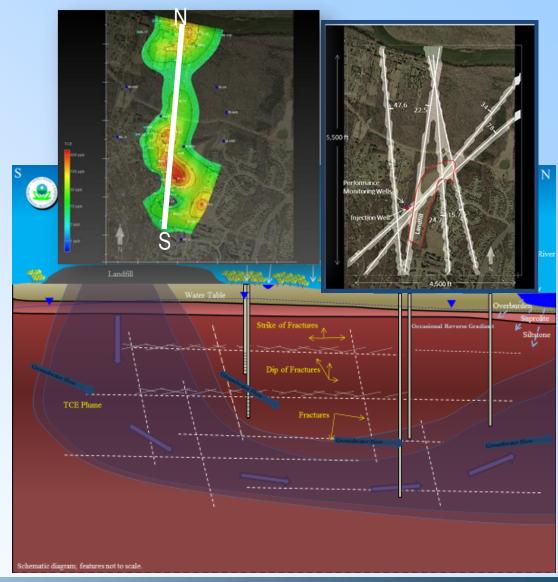
Generalized Geologic Profile


Quaternary Terrace Deposit Overburden (Unconsolidated clayey and sandy silt – 20 ft)

Triassic Balls Bluff
Siltstone deposited
within Triassic Rift
Basin
(Consolidated,
thinly bedded,
fractured bedrock –
5000 ft). Normal
faulting caused by
tensional tectonic
forces

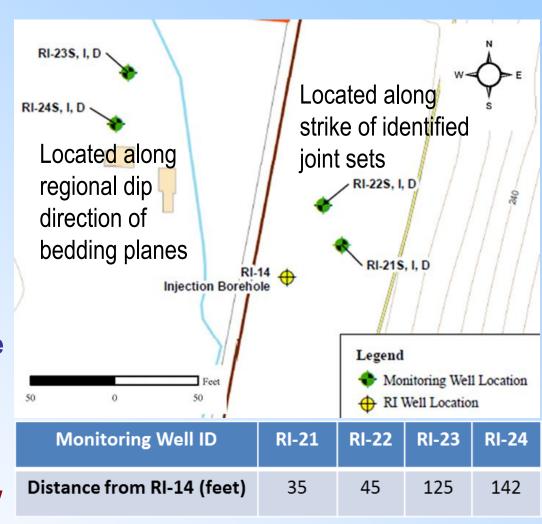
Geologic Map and Cross Section

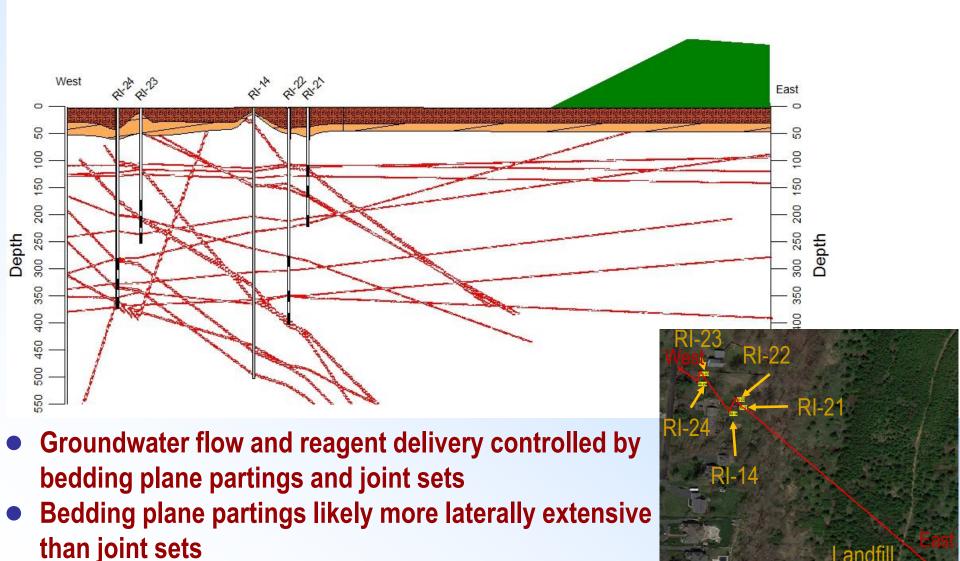
Source: Geologic Map of Loudoun County, 2006



Conceptual Site Model (cont'd)

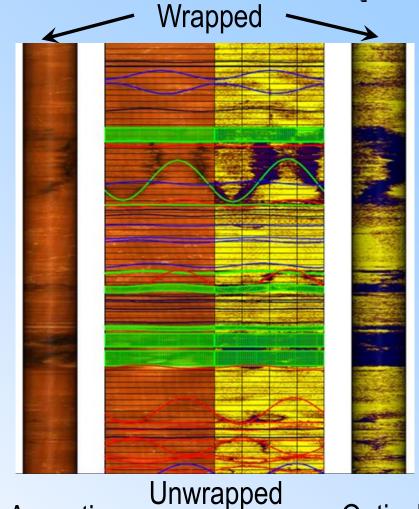
Contaminant Distribution


- TCE emanating from landfill area
- Max dissolved TCE concentration: 500 µg/L
- TCE distribution
 effected by tension
 fault/fractures and
 bedding plane partings
- Plume extending roughly 1 mile and up to 450 ft bgs
- Naturally aerobic conditions


In Situ Bioremediation Treatability Study

- Evaluate effectiveness of distributing bioremediation amendments in fractured bedrock
 - Differences in distribution within vertical zones distinguishable by fracture characteristics
 - Relative influence of fracture joint sets versus bedding plane partings on reagent delivery
- Assess the biological breakdown of TCE in light of the trends of reagent delivery

Hydrostratigraphic Section



Landfill

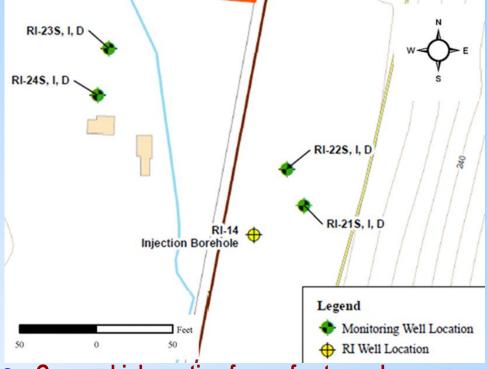
Hydrogeology and Fracture Assessment Techniques

Field Activity	Assessment Objective
Fracture Trace Analysis	Fractures and faults
Boring Advancement	Stratigraphy and contamination to solid matrix
Soil and Rock Classification	Rock texture
Monitoring Well Installation	Groundwater flow direction and contaminant plume morphology
Down-Hole Geophysics with Acoustic and Optical Televiewer, and Heat Pulse Flowmeter	Fracture spacing, density, orientation, and identification of vertical groundwater movement
Borehole Flowmeter Readings	Groundwater vertical gradients
Nested Well Installation	Vertical plume delineation and groundwater flow direction
Packer Isolation Slug Tests	Hydraulic Conductivity and yield
Packer Isolation Vertical Profiling	Vertical plume delineation
Multi-Point Fracture Analysis	Fracture/fault interconnectivity
3-D Plume Visualization	Aid to conceptual site model
Conceptual Site Model	Contaminant distribution interpretation

Acoustic Televiewer

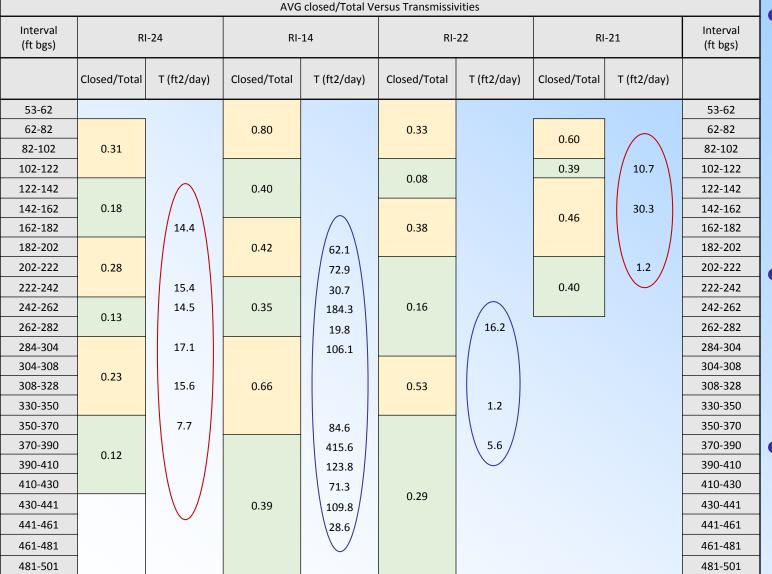
Optical Televiewer

Analysis of Fracture Density from Televiewer Data

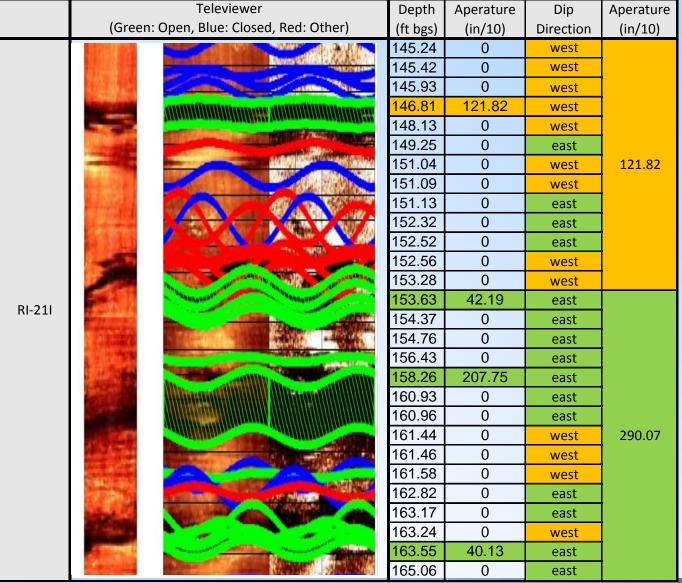

RI-21	Fracture Type								
Interval (ft bgs)	Open	Closed	Other	Open/Total	Aperature (in/10)	Closed/Total	Televiewer (Green: Open, Blue: Closed, Red: Othe		
62-82	1	12	4	0.06	135.85	0.71			
82-102	0	10	10	0.00	0.00	0.50			
102-122	4	7	7	0.22	66.08	0.39			
122-142	2	10	7	0.11	25.06	0.53			
142-162	7	10	8	0.28	371.76	0.40			
162-182	6	8	3	0.35	49.09	0.47			
182-202	3	7	6	0.19	6.21	0.44			
202-222	3	6	10	0.16	158.74	0.32			
222-242	2	4	8	0.14	61.02	0.29			
AVG	3.1	8.2	7.0	0.17	97.09	0.45			

- Green = higher ratio of open fractures; brown = higher ratio of closed fractures.
- Interpreted fracture types tallied for standardized intervals to predict generalized trends of fracture density.
- Density of open/closed fractures qualitatively indicates potential for groundwater and reagent flow within aquifer zones. However, this approach does not quantify the relative influence of discrete or individual fractures on volumetric flow.

General Aquifer Zones Based on Fracture Density


AVG closed/Total							
Interval	RI-24	RI-14	RI-22	RI-21	Interval		
(ft bgs)	KI-24	KI-14	KI-ZZ	KI-ZI	(ft bgs)		
53-62					53-62	F	
62-82		0.80	0.33	0.60	62-82		
82-102	0.31			0.00	82-102		
102-122			0.40	0.39	102-122		
122-142		0.40		0.46	122-142		
142-162	0.18		0.38		142-162		
162-182					162-182		
182-202	0.28	0.42			182-202		
202-222	0.28				202-222		
222-242	0.20			0.40	222-242	/	
242-262	0.13	0.35	0.16		242-262		
262-282	0.15				262-282		
284-304					284-304		
304-308	0.22				304-308		
308-328	0.18	0.66	0.53		308-328		
330-350					330-350		
350-370					350-370		
370-390	0.12	0.12			370-390		
390-410					390-410		
410-430			0.29		410-430		
430-441		141	0.39	0.29		430-441	
441-461	161				441-461	•	
461-481					461-481		
481-501					481-501		

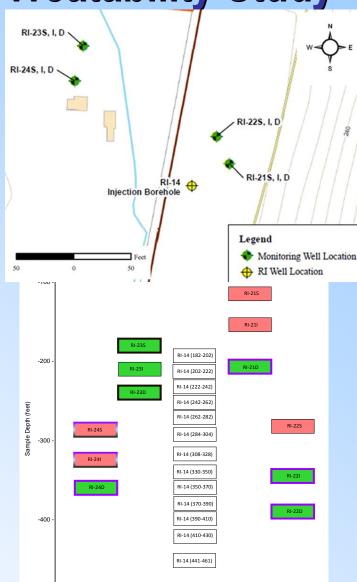
- Green = higher ratio of open fractures; brown = higher ratio of closed fractures.
- Ratio of closed to total fractures per interval resolves major aquifer units comprised of bedding planes and fracture joint sets.
- Orientation of aquifer zones consistent with bedding plane dip and illustrates the model for a regional groundwater flow regime.


Correlation of Fracture Density and Transmissivity

- Aquifer zone
 Transmissivities
 (T) calculated
 from packer
 testing and
 pressure
 responses
 during reagent
 delivery
- Blue = generally good correlation between fracture density and T
- Red = generally poor correlation between fracture density and T

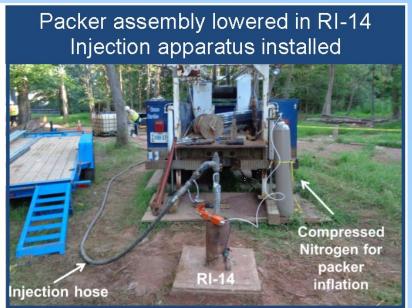
Fracture Aperture Size and Dip Direction

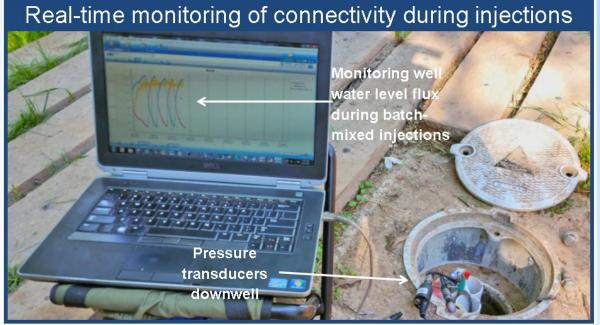
- Aperture size and dip direction reveal potential exceptions to regional flow regime
- Orange = west dipping (generally bedding planes)
- Green = east dipping (generally joint sets).
- Dip direction/aperture size of discrete fractures partially explain anomalous trends with respect to groundwater flow direction, reagent delivery, and ultimate treatment performance.

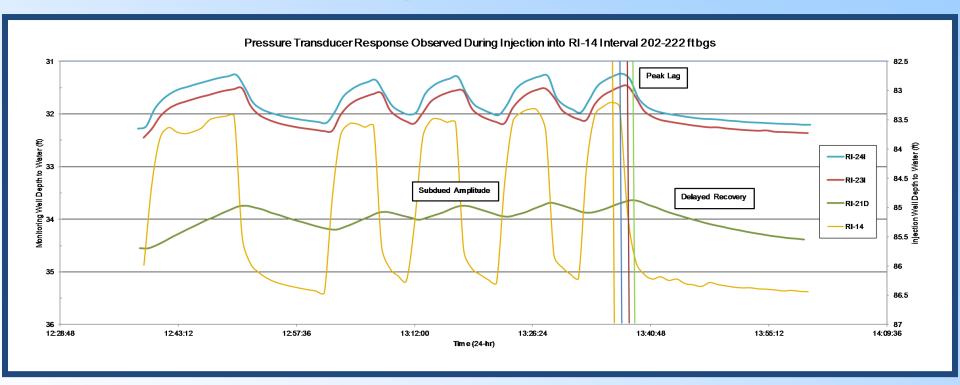

In Situ Bioremediation (ISB) Treatability Study

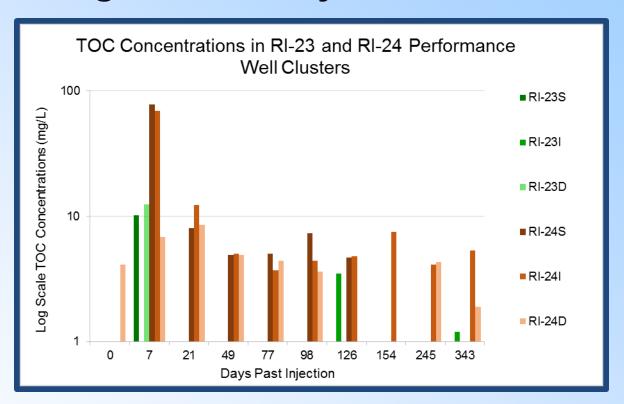
Biostimulation

- Injected lecithin-rich emulsion and chelated Fe⁺²
- Reagent concentration was 5000 mg/L
- 40K gal of reagent injected into 13 zones of RI-14
- 25% reagent to achieve 6720 lb injected
- Volume injected per zone 800-6.5K gal per zone to achieve ROIs of approximately 100 ft


Bioaugmentation


- 15 L of SDC-9™
- Pre-mixed with reagent in field following lactate amendment to pre-condition water
- Injected into RI-14 simultaneously with reagent at pressures of 10 to 30 psi




Pressure Response Characteristics

- Pressure response characteristics such as amplitude, peak lag, and rate of recovery used to assess interconnectedness to RI-14 injection zones.
- Fracture joint sets/large aperture fractures demonstrated larger amplitude, rapid peak and recovery curves.
- Conversely, the bedding planes/small aperture fractures demonstrated subdued amplitude, greater peak lag, and delayed recovery.

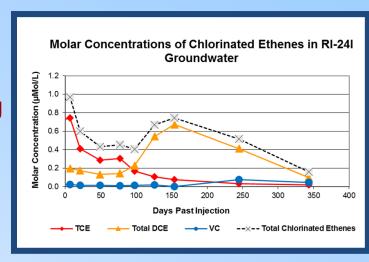
Reagent Delivery Characteristics

- As a tracer for determining reagent delivery, TOC identified non-uniformly in the pilot study area.
- Factors such as fracture aperture size and orientation contributed to the extent of delivery as well as sustained presence in performance monitoring wells.

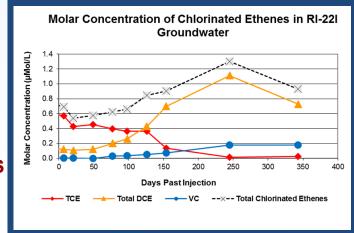
ISB Treatability Performance Summary

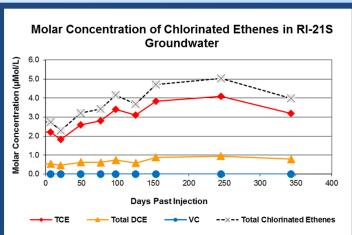
RI-23 S , I, D			Structural Features Influencing Delivery	TOC Delivery + Presence	TCE Dechlorination to VC or Ethene/Ethane	Well ID	Relative Transmissivity	Overall Performance
*	\ //		Joint Sets/Large Aperture	Spike +	No	RI-23S	High	Poor
		RI-22S, I, D	Fractures	Decline	140	RI-23D	High	1 001
		*	Bedding			RI-21D	Low	
			Planes/Small	Some +	Vaa	RI-22I	Low	Good
gi	1 //	* /	Aperture	Sustained	Yes	RI-22D	Medium	Good
\	RI-14 H	RI-21S, I	Fractures			RI-24D	Medium	
)	Injection Borehole	prehole	Combination	Spike +	Yes	RI-24S	High	Best
6.				Sustained		RI-24I	High	
		- "				RI-21S	Medium	
	"	Legend	No Significant	Little to None	No	RI-21I	High	Worst
50	Feet 50	Monit	IIIIIaciioc	Little to None	INO	RI-22S	High	VVOISL
50 0	50	⊕ RI W				RI-23I	High	

- Performers with large aperture fractures and/or influenced by joint sets, TOC immediately observed but not sustained. Larger aperture fractures allow better delivery of reagent. However, larger fractures susceptible to reagent dilution due to higher volumetric groundwater flow.
- Performers with smaller aperture fractures and/or influenced by bedding planes, TOC delivered and sustained for longer period of time. Reagent trapped allowing for longer residence time of TOC, and therefore sustained TCE reductive dechlorination.
- Best performers displayed a combination of these features and high T enabling both better delivery and sustained presence of TOC (and microbes) over the timeframe of the pilot study.

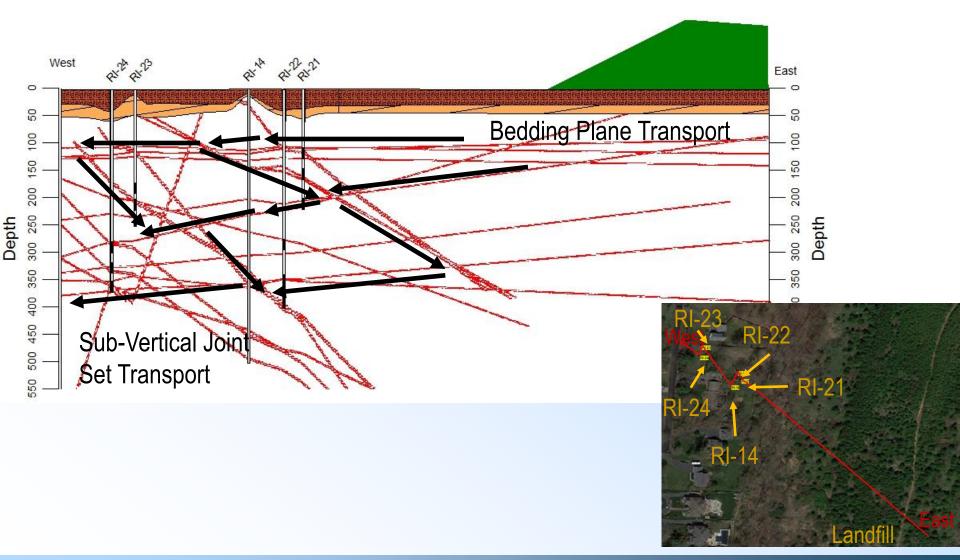


ISB Performance

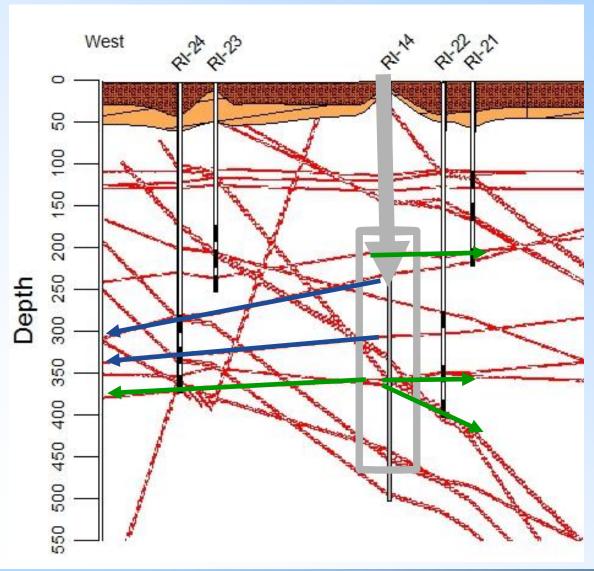

Joint Sets/ Large Aperture Fractures


Joint
Sets/Bedding
Planes
Combination

Bedding Planes/ Small Aperture Fractures



No Significant Influence



Site Understanding Using Leaky Multi-Unit (LMA) Model

Site Understanding Using Leaky Multi-Unit (LMA) Model

- Blue = best overall delivery and performance
- Green = good overall delivery and performance

Conclusions

- Fracture interconnectivity and reagent delivery can be challenging to resolve and predict in complexly fractured bedrock.
- Fracture density zonation and orientation trends confirmed that this site fits the hydrogeologic model of an LMA system with bedding plane partings and sub-vertical fracture flow paths.
- This framework useful in predicting delivery of reagent through generalized potential flow pathways.
- However, the role of discrete fractures & their characteristics such as aperture, transmissivity, precise orientations MUST be analyzed to explain outcomes that vary from predicted patterns that influence reagent delivery and ISB performance.

Acknowledgements

Bruce Rundell, EPA Region 3 Ryan Bower, EPA Region 3

Contact Information:

fbarranco@eaest.com kfox@eaest.com jdrummond@eaest.com

