

Evaluating Enhanced Bioremediation of 1,4-Dioxane with CB1190

Dora Taggart¹, Katherine Clark¹, Brett Baldwin¹, Samuel Rosolina¹ Laurie LaPat-Polasko², Alexandra Polasko³, Shaily Mahendra³

¹ Microbial Insights, ² Ramboll Environ, ³ University of California Los Angeles

Site History

- Manufacturing company in Pennsylvania 50 years ago
- Shallow, unconfined aquifer
- Several processing areas, all used chlorinated solvents as degreasers
- Two separate plumes: east and west
 - Eastern plume has very low 1,4-dioxane concentrations
 - Western plume has high 1,4-dioxane concentrations

1,4-Dioxane Concentrations

Pseudonocardia dioxanivorans: CB1190

- Biodegrades
 - 1,4-dioxane
 - Benzene
 - Toluene
 - THF
 - Diethyl ether
- Over 2,000 monooxygenase associated genes

Site Assessment

- Chemical
 - VOC analysis
- Geochemical
 - Kjeldahl Nitrogen, Phosphorus
 - NO₃⁻, NO₂⁻
 - TOC

Site Assessment

- Chemical analysis
 - PCE
 - TCE
 - cDCE
 - VC

– 1,1-DCE– 1,1,1-TCA

Degradation Pathway

P. Gedalanga et al., Remediation. 2016, 27, 93–114

P. Gedalanga et al., Remediation. 2016, 27, 93–114

Inhibition by cis-1,2-DCE

 DXMO and ALDH suppressed when exposed to > 5 mg/L (Zhang et al.)

S. Zhang et al., Environ. Sci. Technol. 2016, 50, 9599–9607

Inhibition by 1,1-DCE

DXMO and ALDH markedly suppressed when exposed to > 5 mg/L (Zhang et al.)

S. Zhang et al., Environ. Sci. Technol. 2016, 50, 9599–9607

1,1-DCE Concentrations

Site Assessment

- Geochemical analysis
 - Kjeldahl Nitrogen
 - Phosphorus
 - Nitrate
 - Nitrite
 - TOC

-

Remediation Challenges

- Mildly anaerobic conditions
- 1,1-DCE present
- Multiple source areas
- Low levels of nutrients

Parameter	Concentration (µg/ L)	
NO ₃ -	600 - 1000	
Organic Nitrogen	<100	
Phosphorus	90 - 200	
1,1-DCE	1000 - 1700	
cis-1,2-DCE	500 - 2100	

- CENSUS (qPCR)
 - Natural genetic potential
 - Are DXMO and ALDH genes present?
- Compound Specific Isotope Analysis (CSIA)
 - Degradation
 - Is there clear indication of dioxane degradation down-gradient?
- Bio-Trap
 - Culture stability
 - Will a CB1190 culture survive in the environment?

- CENSUS (qPCR) soil and groundwater
 - DXMO: ND
 - ALDH: ND
- Compound Specific Isotope Analysis (CSIA)

• Bio-Trap

- CENSUS (qPCR)
 - DXMO: ND
 - ALDH: ND

Compound Specific Isotope Analysis (CSIA)

• Bio-Trap

Compound Specific Isotope Analysis (CSIA)

- Measures the ratio of stable isotopes (¹³C/¹²C, ²H/¹H, ³⁷Cl/³⁵Cl) of the contaminant
- Bonds with the lighter isotope (¹²C) are slightly weaker and react more quickly resulting in "isotopic fractionation"
- As the contaminant degrades, the ¹³C/¹²C ratio in the remaining contaminant increases
- Physical processes do not appreciably impact isotopic ratios

Significant Isotopic Fractionation is Conclusive Evidence of Contaminant Degradation

Unit of measure

<u>Amount of ¹³C relative to ¹²C is expressed by the δ^{13} C notation</u>

$$\delta^{13}C[\%_{0}] = \left(\frac{({}^{13}C/{}^{12}C)_{\text{Sample}}}{({}^{13}C/{}^{12}C)_{\text{Standard}}} - 1\right) \cdot 1000$$

Units of δ¹³C are "per mill" As the ¹³C/¹²C increases the δ¹³C value become more positive

CSIA and 1,4-Dioxane

- ¹³C CSIA
 - Enrichment factor: -1.73 ± 0.14 (Pornwongthong et al., in review)

CSIA Results for 1,4-dioxane

- No clear change in values down gradient
 - No clear indication of 1,4-dioxane degradation
 - Plume appears uniform

Isotope	Monitoring Well		
	MW-30	MW-31	MW-32
δ ¹³ C (‰, VPDB)	-31.1	-30.8	-30.6
δ²H (‰, VSMOW)	-48	-51	-47

- CENSUS (qPCR)
 - DXMO: ND
 - ALDH: ND

Compound Specific Isotope Analysis (CSIA)

- No indication of degradation
- Isotopically uniform
- Bio-Trap

- CENSUS (qPCR)
 - DXMO: ND
 - ALDH: ND
- Compound Specific Isotope Analysis (CSIA)
 - No indication of degradation
 - Isotopically uniform
- Bio-Trap

What Are Bio-Trap[®] Samplers?

- Passive microbial sampling tool
- Colonized by active microbes
 - Useful for bioaugmentation studies
- 25% Nomex and 75% PAC
- Used in conjunction with
 - Stable isotope probing
 - qPCR and QuantArray
 - Other MBTs

Bio-Trap Study

- Four units
 - MW-30
 - Control Bio-Trap
 - Bioaugmented Bio-Trap
 - 10⁴ DXMO gene copies/bead
 - MW-31
 - Control Bio-Trap
 - Bioaugmented Bio-Trap
 - 10⁴ DXMO gene copies/bead

Bio-Trap qPCR Results

Conclusions

- CB1190 is robust; surviving despite
 - Low nutrients
 - Anaerobic environment
 - High concentrations of inhibitor 1,1-DCE
- Bioaugmentation studies to continue
 - In Situ Microcosms

On-going and Future Work

- In Situ Microcosm Study
 - Analysis of robustness of CB1190
 - Will bioaugmentation work at this site?
 - Is biostimulation via O₂ required?
- How they work
 - Each unit represent a treatment option
 - Each unit contains passive samplers
 - Deployed for 60 days, recovered, and analyzed

In Situ Microcosm Study

Questions?

