Chemical, Biological & Environmental Engineering

COLLEGE OF ENGINEERING

Modeling Aerobic Cometabolism of 1,4-Dioxane and Chlorinated Solvents by Isobutane-Utilizing Bacteria

Hannah Rolston (OSU) Dr. Mohammad Azizian (OSU) Dr. Michael Hyman (North Carolina State University) Dr. Lewis Semprini (OSU)

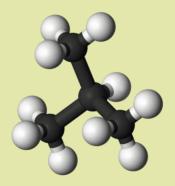
B10, Abstract #333

May 25, 2017

Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies

1,4-dioxane: C₄H₈O₂

- Detergents, resin and surfactant byproduct, stabilizer for chlorinated solvents, 1,1,1-TCA
- CA Geotracker database survey: 14D detected in groundwater at 32% of sites where analyzed; 95% cocontamination with chlorinated solvents (Adamson et al 2014)
- "Likely" human carcinogen (EPA IRIS 2013)
 - 1x10⁻⁶ lifetime cancer risk in drinking water: 0.35 ppb
- State drinking water standards: 0.25 ppb (NH) to 200 ppb (IA) (Arcadis 2016)
- Miscible; log K_{ow}: -0.27; Henry's constant: 4.80x10⁻⁶ atmcm³/mole (ATSDR)
- Pump and treat: resistant to air stripping and activated carbon sorption
- Emerging evidence of natural attenuation, but relatively recalcitrant

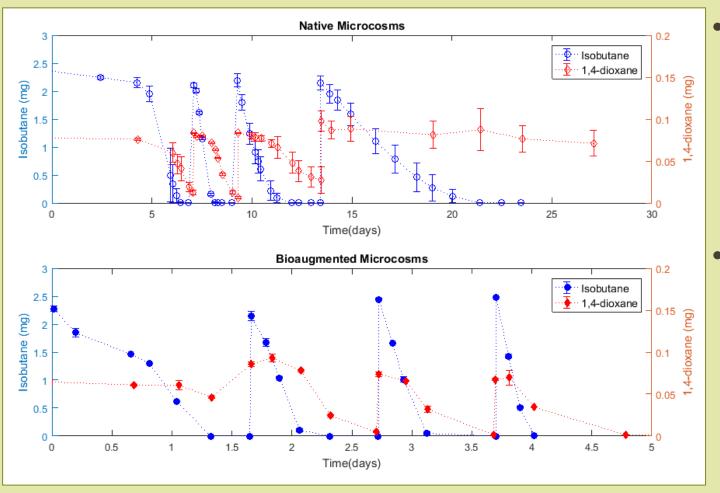


Aerobic cometabolism of 1,4-dioxane

Aerobic cometabolism: use of a primary substrate (electron donor) to stimulate expression of enzymes capable of transforming both primary substrate and contaminant of interest with oxygen as the electron acceptor

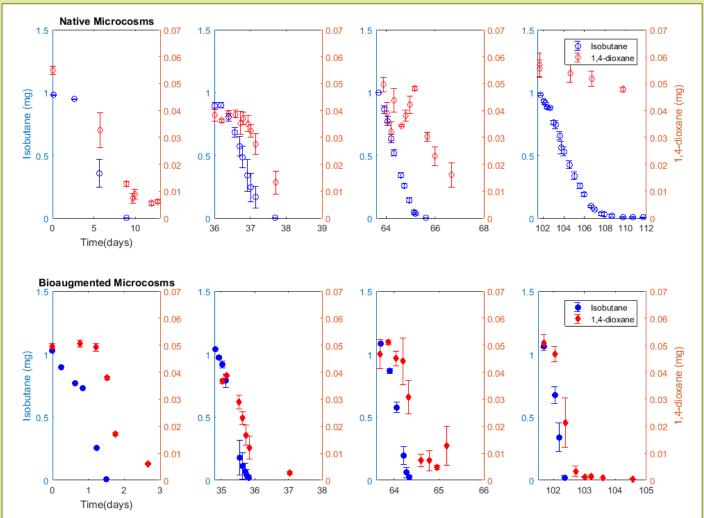
- Primary substrate: Isobutane, C₄H₁₀
- Monooxygenase enzymes transform 1,4-dioxane without benefit to cell
- Model microorganism: *Rhodococcus rhodochrous* (ATCC 21198)

Allows for degradation of low concentrations of 1,4-dioxane


Microcosm Experiments

- Microcosms constructed from artificial groundwater and aquifer solids from Fort Carson, Colorado
 - 35% headspace, Shaken at 200 rpm, 20°C
- Growth and biostimulation experiments
 - **Native:** biostimulation with isobutane
 - **Bioaugmented**: bioaugmentation with ATCC 21198 (grown as pure culture in batch) and given isobutane for growth/biostimulation
- 4 additions of isobutane and 1,4-dioxane
 - Every 2-3 days (short term experiments)
 - Every month (long term experiments)
 - Initial 1,4-dioxane concentration: 500 ppb

Short term microcosm experiments



 Native microcosms: biostimulation lag; decreased rates due to nutrient limitation in later additions

 Bioaugmented microcosms: immediate transformation; increased rates due to biomass growth in later additions

Long term microcosm experiments

Can we model isobutane and 1,4-dioxane cometabolism in microcosms using Monod and Michaelis-Menton kinetics?

$$\frac{dS_G}{dt} = \frac{-K_{max,S_G} * S_G * X}{K_{s,S_G} + S_G}$$

$$\frac{dS_{C}}{dt} = \frac{-K_{max,S_{C}} * S_{C} * X}{K_{s,S_{C}} + S_{C} + \frac{K_{s,S_{C}} * S_{G}}{K_{I}}}$$

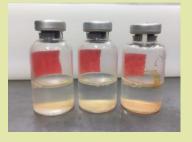
$$\frac{dX}{dt} = Y * \frac{dS_G}{dt} - bX = \frac{Y * K_{max, S_G} * S_G * X}{K_{s, S_G} + S_G} - bX$$

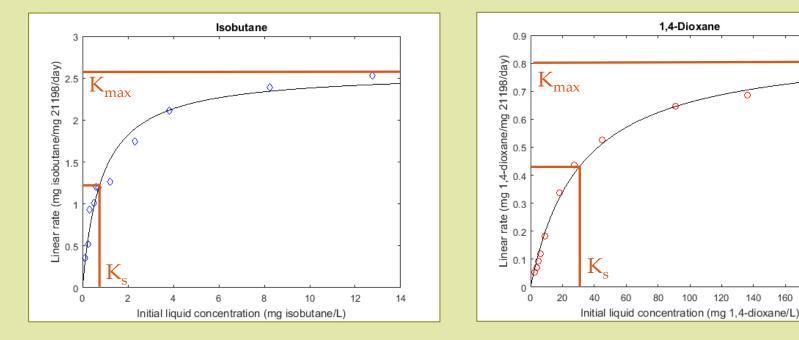
 S_G —growth (primary) substrate S_C —cometabolic substrate X—biomass concentration

 K_{max} —maximum rate of substrate utilization

 K_s —half saturation constant

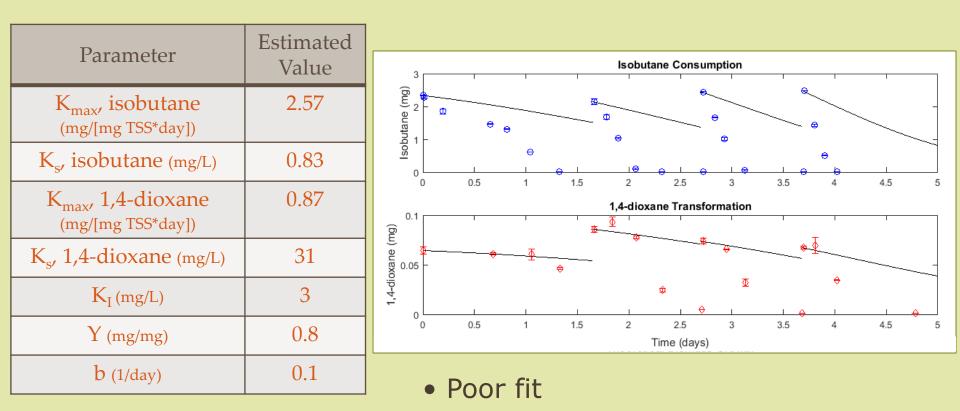
 K_{I} —inhibition constant


Y—biomass yield from primary substrate consumption


b—first order decay rate, biomass

Parameter Determination: Monod Curves

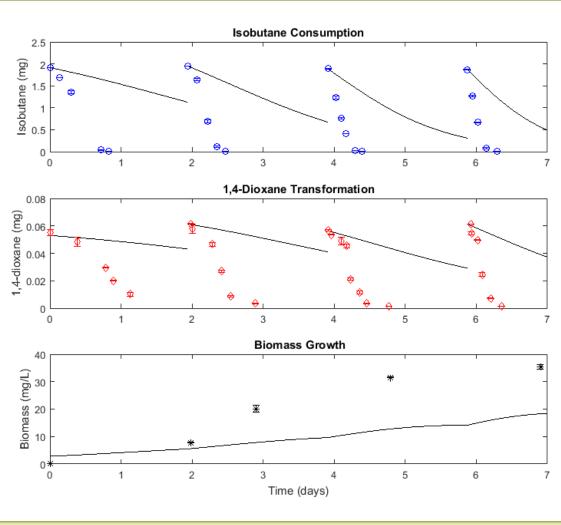
- Rapid, pure culture resting cell tests
- Initial, linear rates determined for a range of isobutane and 1,4-dioxane concentrations



180

200

140

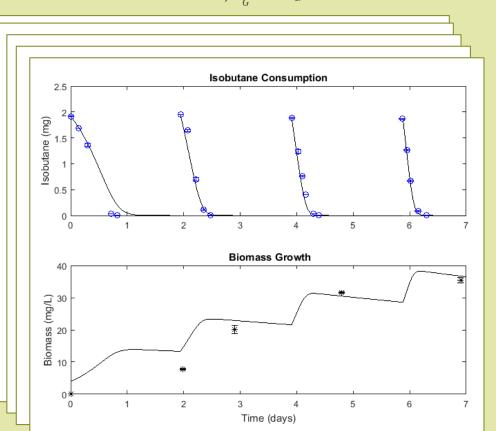

Modeling Microcosm Data: Bioaugmented, short term

Model is too slow

"Microcosm Scale", Pure Culture Growth Experiment

Error	bars	show	standard	error.
-------	------	------	----------	--------

lay	25,	2017
-----	-----	------

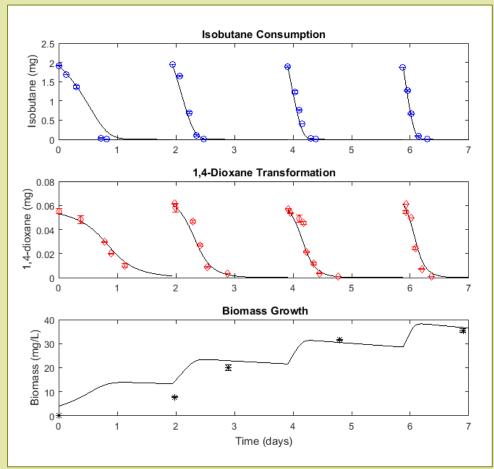

Parameter	Estimated Value	
K _{max} , isobutane (mg/[mg TSS*day])	2.57	
K _s , isobutane (mg/L)	0.83	
K _{max} , 1,4-dioxane (mg/[mg TSS*day])	0.87	
K _s , 1,4-dioxane (mg/L)	31	
K _I (L/mg)	3	
Y (mg/mg)	0.8	
b (1/day)	0.1	
Xo (mg/L)	2.78	

Fitting the model for isobutane (S_G) and biomass (X) data

 $\frac{dX}{dt}$

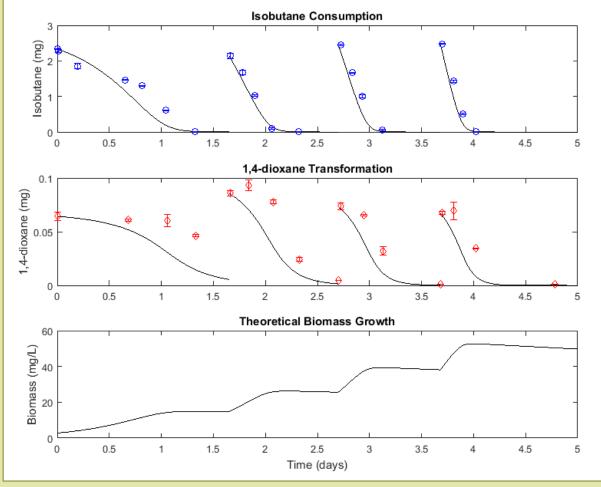
$$\frac{dS_G}{dt} = \frac{-K_{max, S_G} * S_G * X}{K_{S, S_C} + S_G}$$

$$\frac{X_{c}}{K_{c}} = \frac{Y * K_{max, S_{G}} * S_{G} * X}{K_{s, S_{G}} + S_{G}} - bX$$


- Use K_{max} from Monod curve
- Determine K_s from low concentration isobutane rate tests: $K_s: 0.83 \rightarrow 0.05$
- Optimize yield and decay coefficient to fit biomass data: b: 0.1→0.06, Y: 0.8→1
- Increase $K_s: 0.05 \rightarrow 0.1$
- Increasing initial biomass does not have a long-term effect Xo:2.78→4.0

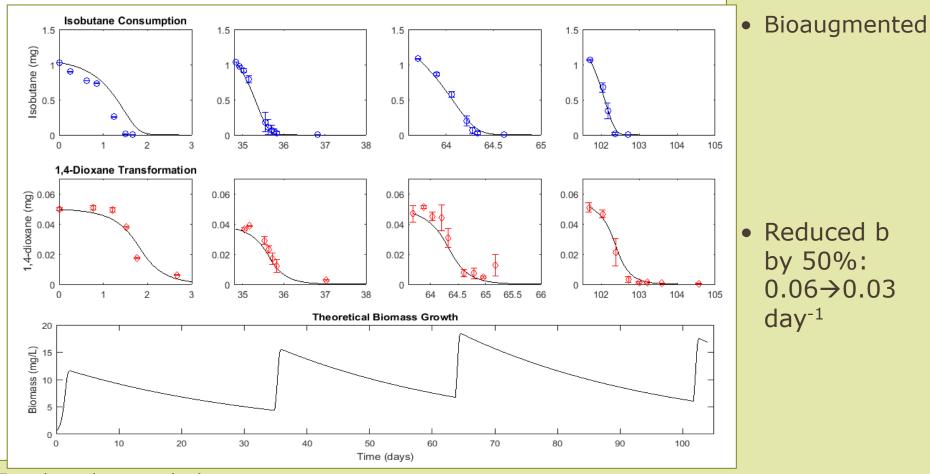
Fitting the data for 1,4-dioxane (S_c) degradation

Updated Parameters: modeling pure culture growth and transformation



Parameter	Estimated Value	Fit Value
K _{max} , isobutane (mg/[mg TSS*day])	2.57	2.57
K _s , isobutane (mg/L)	0.83	0.1
K _{max} , 1,4-dioxane (mg/[mg TSS*day])	0.87	NA
K _s , 1,4-dioxane (mg/L)	31	NA
K _{FO,} 1,4-dioxane (L/[mg*day])	NA	0.20
K _I (L/mg)	3	10.5
Y (mg/mg)	0.8	1
b (1/day)	0.1	0.06
Xo (mg/L)	2.78	4.0

Error bars show standard error.


Modeling microcosm data with updated parameters

- Bioaugmented
- Short term



Modeling the long term microcosm experiment

Error bars show standard error.

Modeling microcosm data with updated parameters

- Native
- Short term
- Reduced initial biomass concentration to 0.0001 mg/L to fit biostimulation lag
- Nutrient limitation needs to be incorporated into the model

Summary

- Isobutane is an effective primary substrate to stimulate cometabolic transformation of 1,4-dioxane in Fort Carson aquifer solids
- Bioaugmentation with ATCC 21198 results in sustained transformation of 1,4-dioxane in microcosms over 100 days
- Estimation of model kinetic parameters should reflect environmentally relevant concentrations
- Simplified Monod/Michaelis-Menten model fits short- and long-term experiments
- Nutrients are an important limiting condition for cometabolism

Acknowledgements

- OSU: Suvadee Thankitkul, Eileen Lukens, Spencer Helterline, Stephenie Wright, Kevin McKeage, Dr. Brian Wood
- Strategic Environmental Research and Development Program (SERDP)
- National Defense Science and Engineering Graduate Fellowship (NDSEG)
- Achievement Awards for College Scientists Foundation (ARCS)
- Geosyntec

Questions?

Hannah Rolston rolstonh@oregonstate.edu

