PERSISTENCE AND BIORMEDIATION OF ENDOSULFAN IN AGRICULTURE SOIL

Namasivayam Vasudevan and Greeshma Odukkathil
Centre for Environmental Studies
Anna University,
Chennai,India

PESTICIDE CONSUMPTION

ENDOSULFAN – STATUS IN INDIA

- > The world's largest user of endosulfan, and a major producer
- ➤ 4500 tonne annually for domestic use and 4,000 tonnes for export.
- ➤ 2001- major suspect of endosulfan began owing to abnormalities noted in local children of Kasargod District of Kerala after aerial spraying of endosulfan on Cashew Plantation.
- ➤ Protest from Kerala & different regions of India resulted in the present ban on endosulfan production and usage under Stockholm Convention 2011.

FATE OF PESTICIDES IN THE ENVIRONMENT

PERSISTENCE-BIOAVAILABILITY

STUDY OVERVIEW

STUDY

Efficiency of a biosurfactant producing bacteria in enhancing bioremediation

soil, plant and run-off water samples (15 days intervals) from 4 villages Formulation of various bacterial consortia

Evaluation of soil microcosm study by quantifying pesticide in soil by GC ECD, GCMS, Survival of Consortium

Map of Thiruvallur district

PERSISTENCE OF ENDOSULFAN

BIOSURFACTANT PRODUCTION

es-47 -37 D/cm, where as the other two strains showed a reduction upto 44 D/cm.

ES-47 Achromobacter xylosoxidans ES-34 Bordetella petri GVI ES-36 Bordetella petri GVII

EXPERIMENTAL DESIGN

PESTICIDE RESIDUES IN AGRICULTURAL SOIL OF PAKKAM VILLAGE

	Concentration of pesticide in soil (mg/g)		
Pesticide	Surface	Subsurface	Subsurface
	(0-15cm)	(15-30 cm)	(30-40cm)
α Endosulfan	4.6±0.14	1.4±0.28	1.3±0.28
β Endosulfan	3.1±0.08	0.63±0.25	0.34±0.04
Endosulfate	11.74±0.04	ND	ND
α ΒΗС	0.39±0.06	0.23±0.18	ND
Г ВНС	0.3±0.44	Nil	Nil
Beta Cyfluthrin	ND	ND	6.64±0.09
op- DDE	0.002±0.15	Nil	0.004±0.21
Chlordane	ND	Nil	0.0006±0.34
isomers			

BACTERIAL GROWTH IN THE SOIL

BIODEGRADATION OF ENDOSULFAN AT DIFFERENT DEPTH OF SOIL

BIODEGRADATION OF ENDOSULFATE

- ➤ Endosulfate concentration was high in the surface soil.
- ➤ Endosulfate 1.2 mg/g in the surface soil, whereas in the subsurface soil it was present in lesser concentration.
- Decrease in endosulfate concentration was observed in the surface soil and its complete removal in the surface soil was observed on the 25th day.
- ➤ In both the subsurface soil (15-30 cm) and subsurface soil (30-40 cm) the distribution of endosulfate was uneven, but after 25 days endosulfate was not detected

HALF- LIFE OF DEGRADATION OF ENDOSULFAN IN SOIL

BIODEGRADATION PATHWAY OF ENDOSULFAN IN SOIL

SURVIVAL OF BACTERIAL CONSORTIUM

CONCLUSION

- Persistence of endosulfan in soil of Thiruvallur, even in subsurface environment.
- Less water soluble pesticides get adsorbed to soil which makes them less bioavailable there decelerating their biodegradation in soil.
- Bioaugumentation enhance the bioavailability of pesticides in soil with simultaneous biodegradation.
- bioaugumentation of contaminated soil with biosurfactant producing bacterial strains capable of surviving in subsurface soil environment can enhance the bioremediation process.
- Bacterial strains Bordetella petrii I GV 34, BBordetella petrii II GV 36 and Achromobacter xyloxidans GV 47 can be an efficient microbial catalyst for enhancing the bioavailability of soil sorbed hydrpophobic pesticides.

THANK YOU

Email- <u>nvasu30@yahoo.com</u> nvasudevan@annauniv.edu