

Evaluation of In Situ Bioremediation of 1,4-Dioxane by Metabolic and Cometabolic Bacteria Using a Contaminant Transport Model

Francisco Barajas, Dora Chiang (AECOM), David Freedman, Lawrence Murdoch (Clemson University)

Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies May 22-25, 2017 | Miami, Florida

1,4-DIOXANE REMEDIATION CHALLENGES

- Miscible in water, strong ether bonds
- Ex Situ advanced oxidation, UV, sonication (high cost)
- Phytoremediation (shallow aquifers/soils)
- In Situ bioremediation

• Aerobic: metabolic or cometabolic

Anaerobic: insufficient evidence

1,4-Dioxane

AEROBIC BIODEGRADATION of 1,4-DIOXANE

METABOLISM		COMETABOLISM
No additional substrate	V.S.	Higher affinity
Low risk of clogging		Potentially better at dilute plumes
Low oxygen demand		THF, propane , methane
Pseudonocardia dioxanivorans CB1190		<i>Rhodococcus ruber</i> ENV425 and mixed culture ENV487
Complete mineralization		Growth sustained

Which approach is best under what conditions? Need to know kinetics!

- Lack of information on kinetics for 1,4dioxane co-metabolism for propaneoxidizing bacteria: ENV425 and ENV487
- Systematic approach to compare performance under *in situ* conditions?
- Effect of low dissolved oxygen concentrations on biodegradation kinetics?
- Incorporate species transport

Rhodococcus ruber ENV425

OBJECTIVE

To provide a framework for a systematic approach that compares bioremediation alternatives involving aerobic metabolism and cometabolism of 1,4-dioxane under different in situ scenarios

PROCEDURE

- Contaminant transport model in Comsol Multiphysics®
 - In situ air sparging
 - Biodegradation: Monod kinetics for CB1190 (Metabolism) and ENV425 (Cometabolism)
 - Calibrated with field data from a demonstration study (Lippincott et al., 2015) where 1,4-dioxane was successfully removed

CONCEPTUAL MODEL

CONCEPTUAL MODEL: TRANSIENT FLOW

CONCEPTUAL MODEL: TRANSIENT FLOW

CONCEPTUAL MODEL: STEADY STATE FLOW

CONCEPTUAL MODEL: ASSUMPTIONS

- Aquifer thickness
 - Small and divided into 5 segments; capillary pressures from each segment (P_C) are averaged
- Steady state flow
 - Constant injection rate
 - No water movement
- Dispersion in water
 - Adjusted to field data
 - Not dependent on velocity

GOVERNING EQUATIONS: GAS and WATER FLOW **CLEMSON**

GOVERNING EQUATIONS: AQUEOUS TRANSPORT

1,4-dioxane, propane, O₂, biomass

$$\frac{dC}{dt} = -\nabla \cdot (u_{w}^{\rightarrow}C) + \nabla \cdot \left(\left(\varepsilon_{w} \cdot (D_{e,w,C} + D_{h,w,C}) \right) \nabla C \right) - q_{C} \cdot X$$

$$\frac{dS}{dt} = -\nabla \cdot (u_{w}^{\rightarrow}S) + \nabla \cdot \left(\left(\varepsilon_{w} \cdot (D_{e,w,S} + D_{h,w,S}) \right) \nabla S \right) - q_{S} \cdot X + \dot{S}_{S}$$

$$\frac{dO}{dt} = -\nabla \cdot (u_{w}^{\rightarrow}O) + \nabla \cdot \left(\varepsilon_{w} \cdot (D_{e,w,O} + D_{h,w,O}) \nabla O \right) - q_{O} \cdot X + \dot{S}_{O}$$

$$\frac{dX}{dt} = -\nabla \cdot (u_{w}^{\rightarrow}X) + \nabla \cdot \left(\left(\varepsilon_{w} \cdot (D_{e,w,X} + D_{h,w,X}) \right) \nabla X \right) - q_{X} \cdot X$$

Change in time = Advection + Dispersion + Biodegradation + Mass transfer

GOVERNING EQUATIONS: GAS TRANSPORT

Propane, O₂

$$\frac{dS_{gas}}{dt} = -\nabla \cdot \left(u_g^{\rightarrow}S_{gas}\right) + \nabla \cdot \left(\left(\varepsilon_g \cdot \left(D_{e,g,Sgas} + \alpha_g^S v_g\right)\right)\nabla S_{gas}\right) - \dot{S}_{S_{gas}}\right)$$
$$\frac{dO_{gas}}{dt} = -\nabla \cdot \left(u_g^{\rightarrow}O_{gas}\right) + \nabla \cdot \left(\left(\varepsilon_g \cdot \left(D_{e,g,Ogas} + \alpha_g^O v_g\right)\right)\nabla O_{gas}\right) - \dot{S}_{O_{gas}}\right)$$

Change in time = Advection + Dispersion + Mass transfer

GOVERNING EQUATIONS

Oxygen

RESULTS: MODEL CALIBRATION

RESULTS: MODEL CALIBRATION

Page 17

SIMULATIONS RESULTS

ΑΞϹΟΜ

EFFECT of INITIAL 1,4-DIOXANE CONCENTRATION

EFFECT of BIOMASS INJECTION RATE

Page 20

EFFECT of OXYGEN INJECTION RATE

Page 21

EFFECT of PROPANE INJECTION RATE

Model calibrated

- Model fit 1,4-dioxane field data: decrease in two closest wells
- Model mismatch on one distant well due to heterogeneities and preferential flow in aquifer
- Sensitivity analysis on remediation times and biodegradation
 - Heavily impacted by **decay**, maximum specific 1,4-dioxane degradation rate, and biomass dispersion (data not shown)

- Metabolic and cometabolic comparison:
 - Cometabolic culture superior at ~0.1 to 10 mg L⁻¹ of 1,4-dioxane
 - Metabolism similar below ~0.1 mg L⁻¹ due to decreased effect of decay
 - Metabolism more affected by biomass and oxygen injection rates
 - Lowest oxygen rates affected both cultures
 - Propane injection rate effect on remediation times reached a plateau; propane added in excess in the field study
- First step towards a framework for evaluating aerobic bioremediation strategies for 1,4-dioxane plumes that require treatment

- Dr. David L. Freedman, Clemson University
- Dr. Lawrence C. Murdoch, Clemson University
- Dr. Dora Chiang, AECOM

Francisco Barajas

Battelle Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies May 22-25, 2017 | Miami, Florida

