Overcoming a Vexing Problem of Remediation at Sites with Complex Geology : EK-enhanced In-Situ Remediation

James Wang, Ph.D., P.E.

Project Team

Geosyntec Consultants

- James Wang
- Evan Cox
- David Reynolds

USACE ERDC David Gent

NAVFAC SE Michael Singletary

Funding – DoD ESTCP

In Situ Remediation is All About Delivery and Contact

Contaminants diffused into low permeability (low-K) materials serve as secondary sources lasting for decades

EISB and ISCO/ISCR are effective technologies, but amendment distribution is poor in low-K and heterogeneous materials

Better amendment delivery techniques are required for low-K sites

From ESTCP, ER-200530

- Application of direct current (<u>DC</u>) to saturated subsurface
- Amendments move through clays and silts via:
 - Electro-migration (EM) movement of charged ions
 - Electro-osmosis (EO) bulk movement of water
 - Electrophoresis (EP) the movement of charged solid particles (e.g., colloids)

• Electromigration is the movement of ions in a fluid due to the applied potential field. Ions are attracted to the electrode of opposite charge

Geosyntec[▶]

consultants

- Electromigration occurs as long as there is a connected water pathway, and the rate is proportional to the gradient of the applied field
- Ion migration velocity related to electrical gradient (driving force)

$$J_{i} = -D_{i}^{*} \frac{\partial c_{i}}{\partial x} - u_{i}^{*} c_{i} \frac{\partial \phi}{\partial x} + qc_{i}$$
 Voltage Gradient

Anions: negatively charged ions Cations: positively charged ions Anode: Positively charged electrode Cathode: Negatively charged electrode

Electroosmosis (EO)

 Electroosmotic (EO) flow is the motion of pore fluid induced by an applied electric field across a porous material.

Why will EK work in low-K formations where conventional hydraulic injection techniques commonly fail?

- EK transport relies on electrical properties of soil (not hydraulic)
- Soil electrical properties ≈ between sand and clay
- As K_h decreases, EK becomes the most efficient delivery method

Geosyntec.com

Effective and Uniform Distribution

EK Applications for In Situ Remediation

<u>EK-BIO™</u> = Distribution of electron donors (lactate) or acceptors (oxygen, nitrate) and/or microorganisms (*Dehalococcoides, Dehalobacter*) to promote biodegradation

<u>EK-ISCOTM</u> = Distribution of permanganate (MnO_4^-) to promote oxidation

<u>EK-TAPTM</u> = Distribution of persulfate $(S_2O_8^{2-})$ by EK (*DC* current), followed by thermal activation of the persulfate (*AC* current)

EK-BIO at NAS JAX Former Building 106 Area

Former dry cleaner

Source for a large dissolved plume

Now under an active parking lot

Many existing subsurface utilities

ESTCP Project ER-201325

Source Area Characterization

consultants

Geosyntec[▷]

cientists | innovators

EK-BIO Pilot Test Design

Pilot Test Design

Electrode / Supply Wells

- 4-inch PVC casing; 0.01-inch slotted screen;
- Screen interval 19 to 23 ft bgs (all within clay)
- Electrode titanium rod (3/4-inch dia.) with MMO coating;
 4-ft long

DC Power Supply Unit :

- Input 120 / 240V, 3-phase AC
- Output up to 24 A / 250V DC

Geosyntec.com

System Construction

Geosyntec.com

engineers | scientists | innovators

Technical Approach

Stage 1 Operation

Geosyntec.com

engineers | scientists | innovators

Stage 1 Operation : Began with 3-month initial conditioning (buffer + lactate);

10 / 2015 – bioaugmentation; 11 / 2015 through 03 / 2016 (~ 5 months)

Stage 2 Operation : 10 / 2016 through 03 / 2017 (~ 5 months)

<u>Electrical Power</u> – 8 A to 9 A; 22 to 31 V Total power ~ **1,500 kW-hr** (~ one family for 4 months)

Lactate Amendment Supply

Total lactate – Stage 1: 238 kg (1,000 gal); Stage 2: 340 kg (1,600 gal)

<u>Buffer Amendment Supply</u> : ~ 1,000 gal K-CO₃

No overpressure injection

Background Wells – CVOC and Microbial Data Geosyntec[▷] consultants Baseline \implies Post Stage 1 \implies Post Stage 2

€ EKN

Geosyntec[▷] Within Test Area – CVOC and Microbial Data Baseline → Post Stage 1 → Post Stage 2

▲ *vcrA* (open symbol: ND)

Geosyntec.com

Soil CVOC (Baseline vs. Post Stage 1)

18.5 ft bgs and 21 ft bgs (clay) at each sampling location

At 18.5 ft bgs

- One location with no detectable baseline PCE
- PCE decreased by 75% ~ 99% at 6 of 7 locations in test area;
- One location with no decrease at 18.5 ft bgs, but >99% decrease at 21 ft bgs

At 21 ft bgs

No significant baseline PCE, except one location where > 99% decrease from baseline

No PCE decrease at background location outside test area

Geosyntec.com

engineers | scientists | innovators

Key Take-away Message

- Achieved complete reductive dechlorination <u>from PCE to ethene</u>; confirmed with microbial genetic signature of specific dechlorination bacteria [background vs. within treatment area]
- Achieved treatment <u>within clay</u> materials [double-cased monitoring wells & soil sampling data]
- Very <u>low energy</u> consumption [DC current & voltage less than 10A, 35V]
- <u>Safe implementation</u> under an active parking lot with many utilities [no overpressure injection]
- Another similar EK-BIO project recevied USACE Green Innovation Award for Sustainability
- An innovative solution to a vexing problem!

Geosyntec.com engineers | scientists | innovators

THANK YOU

James Wang Jwang@Geosyntec.com

Geosyntec.com

engineers | scientists | innovators