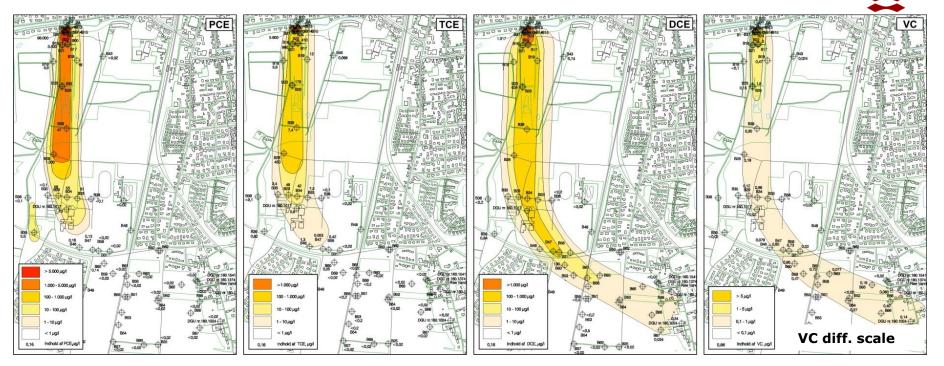


Integrated characterization of NA of PCE plume after thermal source zone remediation

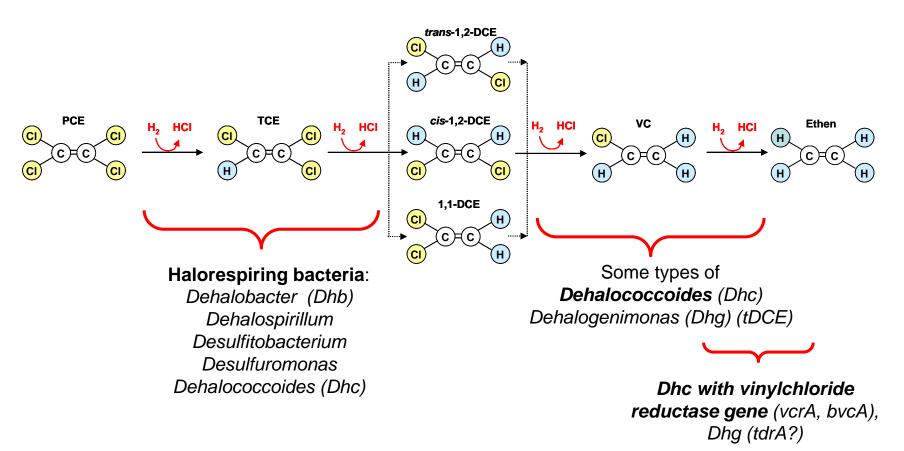
- microbial techniques and dual CSIA

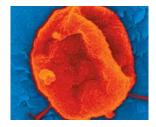

Mette M. Broholm¹, Alice Badin², Carsten S. Jacobsen³, Jordi Palau², Phil Dennis⁴, Niels Just⁴, and Daniel Hunkeler²

 $CH_2O+O_2 \leq CO_2 + H_2$

¹DTU Environment, ²University of Neuchatel, ³AArhus University, ⁴SiREM, ⁵Region of Southern Denmark

DTU Environment Department of Environmental Engineering


Degradation of PCE in plume


- Former central dry cleaning facility in Denmark
- PCE DNAPL in source area, plume in sand aquifer
- Degradation products TCE, DCE and a tiny bit of VC
- Thermal remediation of source area in late 2006. Effect in plume?
- Studies in 2006-7, 2014 (7-8 yr) and 2017 (11-12 yr, in progress).
 Change in risk?
- Tools: Dual CSIA, Dhc (+Dhg) activity, sequencing

Reductive dechlorination of PCE

- Anaerobic conditions and hydrogen/organic donor
- Specific degraders
 - Risk of cDCE and/or VC accumulation, if Dhc or Dhg with vcr genes are not present

NA in plume prior to source remediation

B67

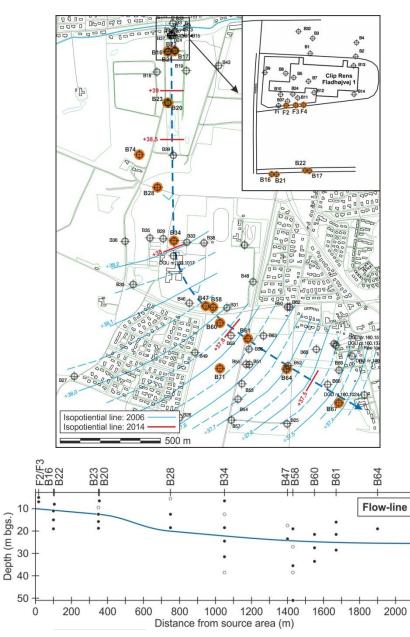
30

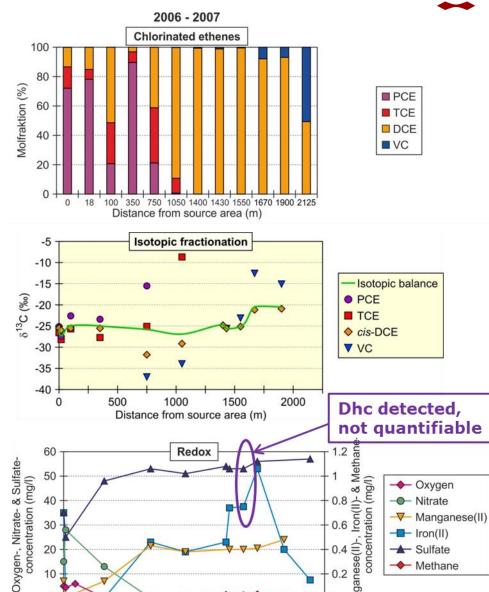
20

10

0

0


500


1000

Distance from source area (m)

1500

0.6

0.4

0.2

0

2000

Manganese(II)

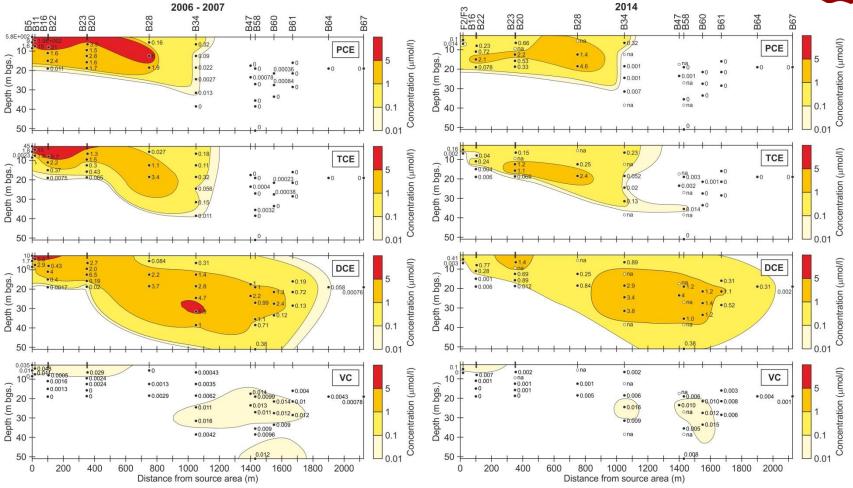
Iron(II)

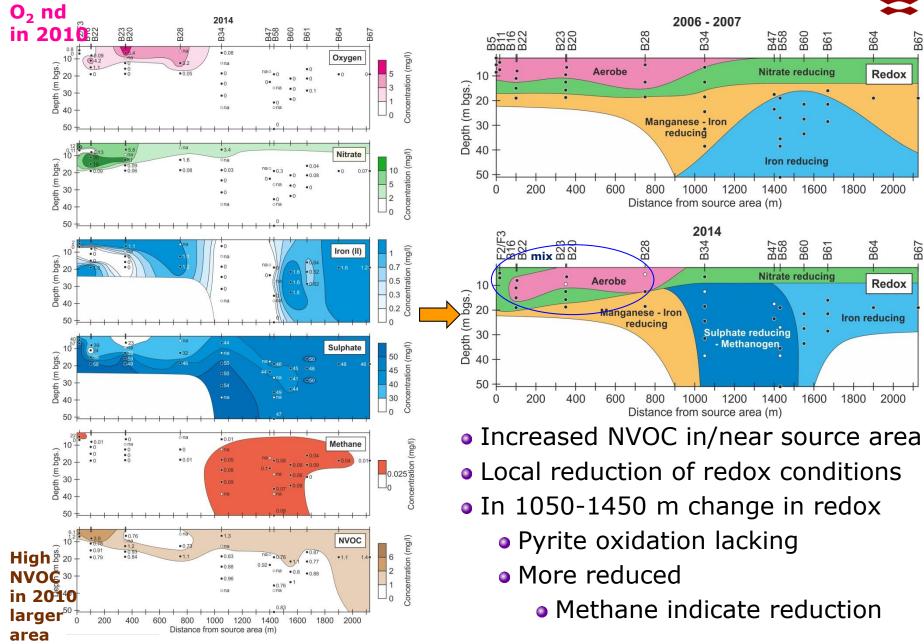
- Sulfate

- Methane

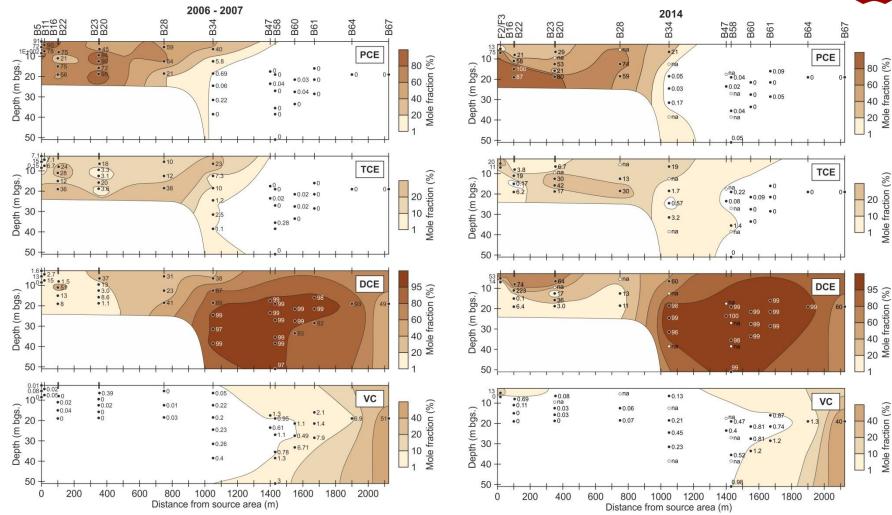
Thermal remediation of source zone

• Steam treatment

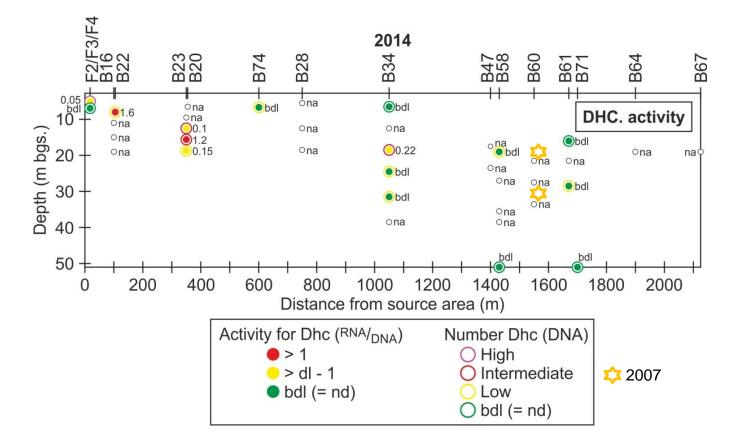

- Vapor extraction
- DNAPL condensation
- AC gas treatment
- 1-2 ton PCE removed


- Dissolved organic matter released from soil by boiling
- Stimulation of NA?
- Change in risk?

Effect on concentrations in plume

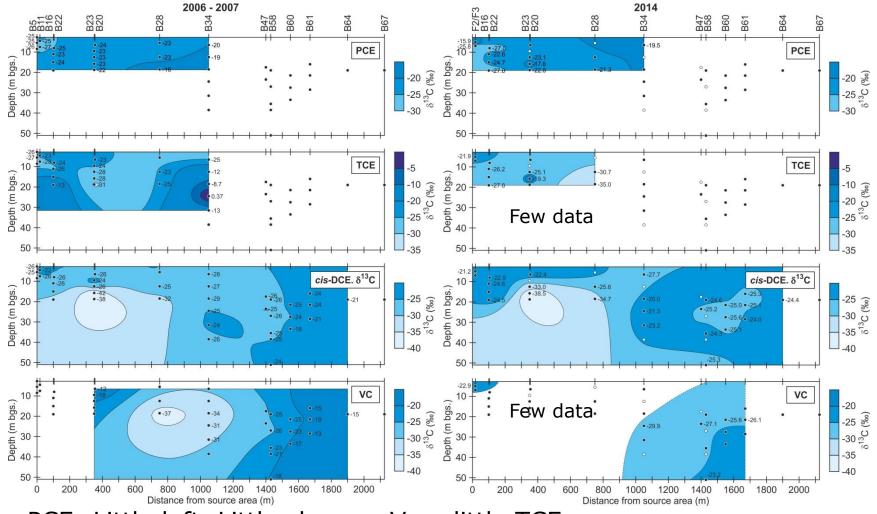

- PCE in source area is 2 orders of magnitude lower
- In the upper part of the aquifer a significant decrease in concentrations is observed to >750 m
- Centrally in the plume (1050 m) DCE and VC has decreased
- DCE continue to spread in downgradient direction

Effect on redox conditions


Effect on molar composition - degradation

- PCE degradation near source
- cDCE increase near source, little VC
- cDCE increase at 1050 m
- cDCE downgradient expansion small (mostly less VC)

Specific degraders and activity (mRNA/DNA) in the plume after source remediation

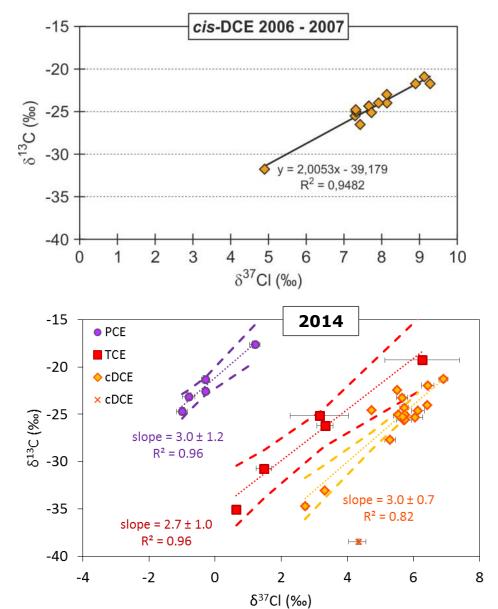

- Dhc more widespread in 2014, generally low level (except F4-3)
- VcrA and bvcA not detected
- Dhc activity 0-350 m and 1050 m

Sequencing. Chlorinated ethene degraders

Carrie	Complete RD			RD of PCE+TCE							Ox VC+DCE			
	Dhc	Dhg	f_Dehalococ- coidetes (m.Dhc&Dhg)	Dhb Dehalo- bacter	Gb Geo- bacter	Clostri- dium	Aceto- bacterium	Desulfo- vibrio	Sporo- musa		Po Polaro- monas	Myco- bacterium	Nocar- dioides	Methylo- sinus
B23-2	5.21·10 ⁴	1.66·10 ⁶	3.04·10 ⁶	1.30.105	Nd	Nd	5.21·10 ⁴	Nd	Nd	Nd	7.42·10 ⁵	2.60·10 ⁴	2.61·10 ⁴	Nd
B23-3	Nd	1.63·10 ⁵	3.72·10 ⁶	Nd	Nd	Nd	Nd	Nd	9.18·10 ⁴	Nd	<u>2.04·10⁵</u>	<u>1.33·10⁵</u>	<u>4.38·10⁵</u>	<u>2.04·10</u> ⁴
B34-2	7.05·10 ⁴	<u>8.28·10⁵</u>	4.72·10 ⁶	<u>2.64·10⁵</u>	<u>9.70·10⁵</u>	<u>4.58·10⁵</u>	<u>1.76·10⁵</u>	<u>7.05·104</u>	<u>8.81·104</u>	Nd	<u>3.88·10⁵</u>	<u>2.52·10⁴</u>	<u>3.52·104</u>	Nd
B34-3	9.28·10 ⁴	3.31·10 ⁵	1.78·10 ⁶	3.18.105	2.66·10 ⁵	6.65·10 ⁴	Nd	Nd	Nd	Nd	5.70·10 ⁵	Nd	Nd	Nd
B34-4	Nd	3.74·10 ⁵	2.50·10 ⁶	Nd	1.50·10 ⁴	Nd	1.95.105	Nd	Nd	Nd	Nd	Nd	Nd	Nd
B34-6	Nd	4.61·10 ⁵	9.99·10 ⁵	Nd	5.77·10 ⁴	Nd	Nd	Nd	Nd	Nd	Nd	Nd	3.85·10 ⁴	Nd
B58-2	Nd	8.34·10 ⁴	5.17·10 ⁵	Nd	3.33·10 ⁴	Nd	Nd	Nd	Nd	3.33·10 ⁴	1.12·10 ⁶	Nd	1.76·10 ⁴	Nd
B58-6	1.06·10 ⁵	$6.60 \cdot 10^4$	$9.78 \cdot 10^{5}$	Nd	9.24·10 ⁴	5.28·10 ⁴	Nd	2.64·10 ⁴	2.64·10 ⁴	Nd	1.66·10 ⁶	Nd	Nd	Nd
B61-1	<u>4.40·10⁴</u>	<u>5.50·10³</u>	1.76·10 ⁵	<u>6.05·104</u>	<u>1.26·10⁵</u>	<u>1.65·104</u>	<u>5.50·10³</u>	<u>5.50·10³</u>	<u>7,.2·10⁵</u>	<u>5.50·10³</u>	1.65·10 ⁴	Nd	Nd	Nd
B61-3	Nd	5.90·10 ³	4.66·10 ⁵	Nd	1.77·10 ⁴	Nd	Nd	Nd	Nd	Nd	4.60.105	Nd	5.90·10 ⁴	Nd
B74-3	8.30·10 ⁴	2.77·10 ⁴	1.80·10 ⁵	1.94.105	8.29·10 ⁴	1.24·10 ⁴	$1.81 \cdot 10^{6}$	2.76·10 ⁴	Nd	Nd	$1.11 \cdot 10^{6}$	2.77·10 ⁴	Nd	Nd
kontrol	Nd	Nd	$1.24 \cdot 10^{6}$	5.52·10 ⁴	Nd	Nd	Nd	Nd	Nd	3.36·10 ⁶	Nd	Nd	Nd	5.52·10 ⁴

- >5000 OUT, searched for specific chlorinated ethene degraders
- 2 Complete RD: Dhc, Dhg
- 7 RD of PCE+TCE
- 4 Aerobic oxidation of VC, 1 VC&cDCE: Polaromonas.
- Very complex composition of bacteria in many samples suggest several different concurrent degradation processes

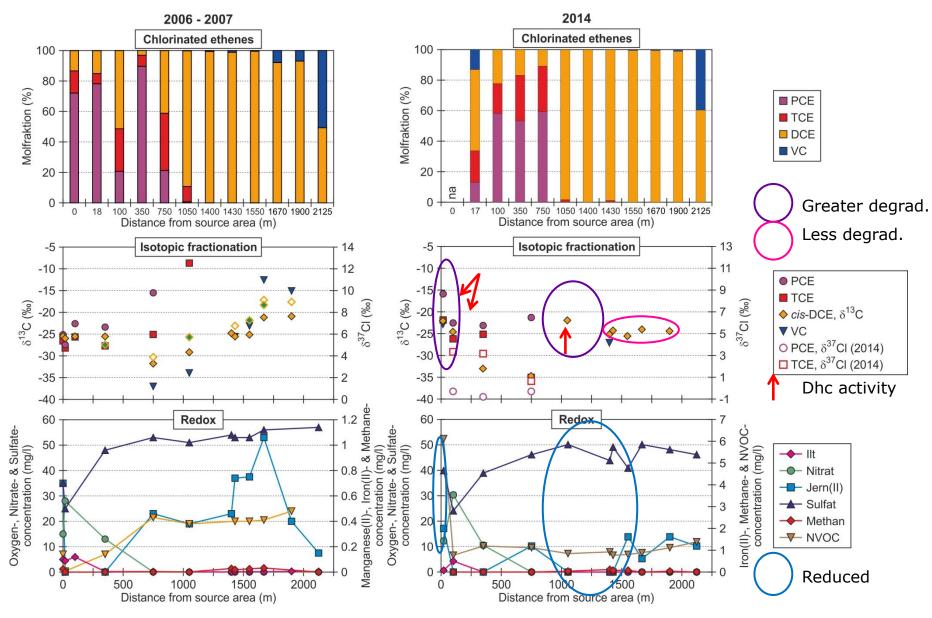
Effect on degradation. Isotopic fractionation



• PCE: Little left. Little change. Very little TCE.

- cDCE: Significant change. 0-350 m Degradation occurs.
- cDCE: 1050 m Degradation has increased (400 m before).
- VC: Few detect.

Dual stable isotopes – C and Cl



- Linear correlation could indicate dechlorination?
- Correlation coefficient indicative of degradation process
- PCE (3):
 Biotic RD
 - PCE \rightarrow TCE, Sulfurospirillum: **2.7**
 - PCE \rightarrow DCE, Sulfuroospirillum: 0.7
 - PCE→DCE, Desulfitobacterium:2.5
 - TCE (**2,7**):
 - Biotic RD: 4.8; 3.4-3.8
 - Abiotic RD: 5.2
 - DCE (2-3):
 - Abiotic RD: 3.0; 3.1
 - Biotic RD, Dhc-vcr: 11.6
 - Aerobic biotic oxidation: 32.3

Badin 2014, Wiegert 2013, Audi-Miro 2013, Abe 2009, Kuder 2013, Cretnik 2013

Summary 2014

2017 Preliminary results

Sampled March-April 2017

Redox

- Near source, upper part: oxicanoxic i.e. back to 2006 status
 1050 L m: As reduced as in 201
- 1050+ m: As reduced as in 2014
- Near source conc. and degradation
 - Conc. nearly as 2014, but less VC
 - Continued stimulation of degradation
- Far plume degradation
 - Comparable to 2014
 - Maybe a bit more VC?
 - Continued stimulation of degradation
- Plume expansion
 - Maybe small increase

- Specific degraders (4 samples)
 - Dhc and Dhg as in 2014
 - Now vcrA/bvcA quantifiable
 - Other Dehalogenating bact. as 2014
 - Sulfate reducing, bit of methanogenic, bacteria present
- Activity
 - Analysis in progress
- Dual CSIA
 - Analysis in progres

Conclusion and perspectives

- Mass much smaller after source remediation and decreasing
- Reduced conditions induced by NVOC release
- Degradation increased
- Mixed degradation processes on-going
- cDCE abiotic as well as biotic degradation
- Risk decreased (not eliminated)
- Future evolution in conditions and degradation?
 - Preliminary 2017 data so far appear promising
- Stimulation potential revealed for:
 - Biotic (ERD) degradation
 - Biotically induced (FeS) abiotic degradation (ISCR)

References

Badin et al. 2016. J. Contam. Hydrol., 192, 1-19. Hunkeler et al. 2011. J. Contam. Hydrol., 119, 69-79.

Acknowledgements

- The Region of Southern Denmark for funding of sampling, analysis and reporting
- The European Commission, Marie Curie Actions Project No. 265063 for funding of the PhD project of Alice Badin and stable isotope and microbial analysis
- University of Toronto assisted with interpretation of seequensing results
- Technicians at DTU Environment, Region of Southern Denmark, and GEUS assisted with field and laboratory work