

human energy[®]

Hottpad: Results from a Field Demonstration Project for Treatment of Heavy Oil Sludge and Oil-Impacted Soil

Dave Thomas, Gabriel Sabadell*, and Paul Bireta Chevron Energy Technology Company

Grant Scholes, Cody Murray, and Dave Major Savron

Symposium on Bioremediation and Sustainable Environmental Technologies Miami, FL, May 23, 2017

Presentation Overview

- Heated Overland Thermal Treatment Pad (Hottpad) concept
- Field Demonstration System
- Summary of Operations
- Treatment Results
- Technology Summary

Acknowledgements:

- Coauthors: Dave Thomas & Paul Bireta (ETC); Grant Scholes, Cody Murray & Dave Major (Savron)
- Chevron: Bryan Hilario, Gerrit Schalkwijk & Bob Wilkenfeld (EMC); Tom Peragin (retired), Tim Buscheck & Ravi Kolhatkar (ETC)
- Savron: Gavin Grant, Benoit Boulay, & Laura Kinsman
- Western University (Ontario): Jorge Gabayet, Rebecca Solinger & Jason Gerhard

/lajor (Savron) ed), Tim Buscheck &

2

Smoldering Combustion

Hottpad (Heated Overland Thermal Treatment Pad)

Based on the process of smoldering combustion: Exothermic reaction converting carbon compounds to $CO_2 + H_2O$

> Heater Element (for ignition only)

Smoldering is possible due to large surface area of organic liquids (e.g., NAPL) within the porous matrix

Oil-Impacted Soil or Oily Waste Product

Injected Air

Oxidant

Fuel

Combustion

Heat

Overview of Hottpad Concept

Technology Objectives

- Low capital cost
 - Fabrication materials
 - Minimize handling and preprocessing equipment
- Provide adequate treatment capacity/volume
- Simplify and reduce O&M

Conceptual Cross-Section

- Heat and air to initiate the treatment
- Impermeable cover for emissions collection •

- Continued air injection to sustain the • treatment
- Injected air cools already treated material

© 2017 Chevron

Field Demonstration Project

Project Scope

- Treat sludge from an API separator
- Treat oil impacted soil from the site

Project Objectives

- Demonstrate successful scale-up of the technology
- Develop a better basis for:
 - Full-scale costs (Capital and O&M)
 - System design improvements
 - System operational efficiencies
- Alternative to more costly remedial option

Facility in Southeast Asia

Field Demonstration System Layout

Basics of Hottpad

Hottpad Base

Trafficable Grate

Field Demonstration 6 Pad System (~ 80 m²)

7

Field Demonstration System – North Side

Chevron

CEMS – Continuous Emissions Monitoring System

Field Demonstration System – South Side

Summary of Operations - Loading

Sludge

Solid Matrix

- Sludge & Solid matrix blended • $(\sim 1:4 \rightarrow sludge:soil)$
- Load blend onto Hottpad (~2 m) •
- Place clean cover material (~0.5 m) \bullet
- Place emissions collection ۲

Placing Clean Cover Material

© 2017 Chevron

Summary of Operations – Start Up

Test 1 Surface/Matrix Temperatures

- System start up •
 - **Extraction blower** •
 - Injection blowers •
 - Heaters in Hottpads •
- Confirm ignition \bullet
 - Carbon Monoxide (CO) •
 - interface

Temperature @ Hottpad surface/Materials

Summary of Operations – Sustained Treatment

Test 3 Maximum Observed Temperatures

- Turn off heaters •
- Maintain injection and extraction air flow ٠
- Monitor emissions until treatment complete \bullet
 - CO returns to background •
 - Temperature \bullet

Summary of Operations - Completion

© 2017 Chevron

Removing Clean Cover Material

- Increase injection to cool pile \bullet
- Remove emissions collection ۲
- Remove treated soil •
 - Reuse to blend or as clean cover
- Repeat the process \bullet

Exposure of Treated Blend Material

Demonstration Summary

Run	Sludge Treated (m ³)	Hottpad Load Volume (m ³)	Moisture Content (% by wt)	Oil Content (% by wt)	Initial TPH Concentration (mg/kg)	Final TPH (mg/kg)	
1	14	45	47	7	35,350	<150	Full st
2	31.5	135	12	3	14,670	<150	Rollir
3	19.5	135	20	1.5	8,700	<150	F
4	21	141	20	1.5	9,560	<150	Rollir

*S1 material was a crushed rock similar to a very coarse sand

** Site soil is kaolinitic material with silts, fine sands, and clay

Comment art, S1 solid matrix* ng start (2 pads), S1 Rolling start, S1 ng start, site soils**

Treatment Results

Learnings

Chevror

- Scale-up from prototype was appropriate
 - Small-scale testing to support system design
- The treatment process is more robust at larger scale
- Opportunities for system refinement
 - -Further reduce peak power (e.g. rolling start)
 - Additional system automation
 - Reduce processing time
- Emissions management
 - Treatment for odor abatement
- Operations is straightforward and transferrable

Test 3 – 3 Days of Monitoring Data

Technology Summary

Hottpad is effective for the treatment of oily waste and oil-impacted soil

Benefits:

- Less costly than alternative thermal treatment technologies
 - For large volumes, costs ≤ "dig-and-haul" costs
 - Simultaneous treatment of sludge & impacted soil
- The process is robust:
 - Oil content of 1 to 20+%
 - Can handle high water content
 - Relatively wide range of soil types
- Scalable
 - Large, centralized facilities
 - Mobile and portable systems
- On-site treatment
 - Reduce remediation Green House Gas (GHG) footprint
 - Minimize motor vehicle incidents (accident or spill)

Limitations:

- Batch process
- High fines content in solid matrix
- Emissions treatment
- Not intended for non-combustible materials (e.g. metals)

Thank You

Questions ?

gpsabadell@chevron.com

18