*In Situ* Stabilization/Solidification as a Sustainable Alternative for the Remediation of Heavy Hydrocarbon Sites

# Geosyntec Consultants

## PRESENTED BY | <u>Jule Carr, EIT</u> Chris Robb, PE



In Situ
 Stabilization/Solidification (ISS)
 Technology Overview

- 2. Objectives of Study
- 3. Study Site Overview
- 4. Study Approach
- 5. Results
- 6. Recommendations for Future ISS Implementations
- 7. Study Summary





## 1. ISS Overview

#### TREATMENT

- Mixing of contaminated materials with cementitious reagents:
  - Result: Reduce contaminant migration via Advection, Hydrodynamic Dispersion and Diffusion

#### **STABILIZATION**

- Chemical reaction between reagents and contaminated materials designed to reduce the leachability of targeted contaminants by:
  - Binding free liquids
  - Immobilizing targeted contaminants
  - Reducing solubility of the contaminated material

#### SOLIDIFICATION

- Contaminated materials are encapsulated (physically trapped) to form a solid material that restricts contaminant migration by:
  - *Reduction of permeability and effective porosity*
  - Increasing compressive strength and media durability





## 1. ISS Overview – Conceptual Site Model





Source: Interstate Technology & Regulatory Council (ITRC). (2011). "Development of Performance Specifications for Solidification/Stabilization".





## 1. ISS Overview – Column Layout







Source: Jayaram, V., Marks, M. D., Schindler, R. M., Olean, T. J., & Walsh, E. (2002). "In Situ Soil Stabilization of a Former MGP Site," Portland Cement Association, Skokie, IL.





## 1. ISS Overview – Column Layout







## 1. In Situ Stabilization/Solidification Overview ISS can be designed to provide additional

benefits:

- Increased strength/stability
- Reduce/mitigate contaminant leaching
- Eliminate the need for excavation of saturated soil
- Decreased subsurface permeability
- Reduce dewatering requirements
- Treatment of low permeability formations and recalcitrant impacts



Source: WRScompass. N.d. http://www.geoengineer.org/education/web-based-class-projects/geoenvironmental-remediation-technologies/stabilization-solidification?showall=1&limitstart=. Web. 27 Jan. 2016





# 2. Objectives of Study

- a) Quantify benefits of implementing ISS as a sustainable alternative to traditional dig and haul operations for the remediation of heavy hydrocarbon sites.
- Identify ISS components with potential to reduce overall carbon footprint.









# 3. Study Site Overview



- Manufactured Gas Plant (MGP) Site in Central Florida
- Completed in 2011

## > Purpose:

- Solidify MGP impacts
- Prevent contamination of groundwater
- Average depth of impacts:
  - 30 ft bgs
- Average depth to groundwater:
  - 2-8 ft bgs





# 3. Study Site Overview



- Total ISS Volume: 143,532 cubic yards (CY)
- Included excavation and disposal of 62,910 tons of nonhazardous material
- ISS with crane mounted rig
- Used 8,10, and 12 ft diameter augers







# 3. Study Site Overview



- Targeted Permeability:
  - < 1x10<sup>-6</sup> cm/sec
- Targeted Unconfined Compressive Strength (UCS):
  - > 50 pounds per square inch (psi)







# 4. Sustainability Study Approach

Used two tools to quantify sustainability metrics for:

- Alternative 1 ISS
- Alternative 2 Excavation & Off-Site Disposal

A. USEPA's Methodology for Understanding and Reducing a Project's Environmental Footprint



## **B. Basic Cost Analysis**









Source: EPA's Methodology for Understanding and Reducing a Project's Environmental Footprint. Seminar. May 22 2013.





Alternative 1 – ISS







Alternative 2 – Excavation & Off-Site Disposal





## Key Assumptions:

## Equipment

Materials

**Off-Site Disposal** 

Schedule



## Productivity

#### Reuse





Crane mounted drill rigs Water for grout production 1,000 CY/day 5-6 months Minimal Cement/Slag

### Alternative 2 Excavation



Clean Fill/ Sheet Piles Majority 13-14 months Haul Trucks Excavation: 800 CY/day Backfill: 1,000 CY/day Clean soil for backfill



## 4. Approach – Cost Analysis

- Used completed ISS implementation cost data
- Used rates from Alternative 1 ISS excavation data to develop Alternative 2 Excavation & Off-Site Disposal cost analysis



Compared cost <u>only</u> for implementation of technology









| Equipment Type*                               | HP* | Load<br>Factor<br>(%)* | Equipmo<br>nt Fuel<br>Type |
|-----------------------------------------------|-----|------------------------|----------------------------|
| Drilling - large rig (500 HP)                 | 440 | 75%                    | Biodiesel                  |
| Telescopic handler (60 HP)                    | 64  | 75%                    | Diesel                     |
| Excavator - large (250 HP)                    | 270 | 75%                    | Diesel                     |
| Other - HP varies                             | 300 | 75%                    | Diesel                     |
| Generator - HP varies                         | 189 | 75%                    | Diesel                     |
| Rotary-screw air compressor - 250 cfm (60 HP) | 60  | 75%                    | Diesel                     |
|                                               |     |                        |                            |









|                                                 | Units   | Usage    | Energy          |           | GHG             |           |
|-------------------------------------------------|---------|----------|-----------------|-----------|-----------------|-----------|
| Contributors to Footprints                      |         |          | Conv.<br>Factor | MMBtus    | Conv.<br>Factor | lbs CO2e  |
| On-Site                                         |         |          |                 |           |                 |           |
| On-site Renewable Energy                        |         |          |                 |           |                 |           |
| Renewable electricity generated on-site         | MWh     | 0        | 3.413           | 0         | (               |           |
| Landfill gas combusted on-site for energy use   | ccf CH4 | 0        | 0.103           | 0         | -262            | 0         |
| On-site biodiesel use                           | gal     | 51909    | 0.127           | 6592.443  | 22.3            | 1157570.7 |
| User-defined on-site renewable energy use #1    | TBD     | 0        | 0               | 0         | 0               | 0         |
| User-defined on-site renewable energy use #2    | TBD     | 0        | 0               | 0         | 0               | 0         |
| On-site Renewable Energy Subtotals              |         |          |                 | 6,592     |                 | 1,157,571 |
| Notes:                                          |         |          |                 |           |                 |           |
| On-site Conventional Energy                     |         |          | 2               |           |                 | Ī         |
| Grid electricity                                | MWh     | 0        | 3.413           | 0         |                 |           |
| On-site diesel use                              | gal     | 79129.05 | 0.139           | 10998.938 | 22.5            | 1780403.6 |
| On-site gasoline use                            | gal     | 0        | 0.124           | 0         | 19.6            | 0         |
| On-site natural gas use                         | ccf     | 0        | 0.103           | 0         | 13.1            | 0         |
| User-defined on-site conventional energy use #1 | TBD     | 0        | 0               | 0         | 0               | 0         |
| User-defined on-site conventional energy use #2 | TBD     | 0        | 0               | 0         | 0               | 0         |
|                                                 |         |          |                 | 10.000    |                 | 1 700 404 |









Alternative 1 - ISS Environmental Footprint Summary

|                            |        |                                                                                                                                       | Fostprint          |                        |             |                     |                                      |           |
|----------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-------------|---------------------|--------------------------------------|-----------|
| Core Element               | Metric |                                                                                                                                       | Unit of<br>Measure | Drilling<br>Operations | Batch Plant | Swell<br>Management | Excavation<br>& Off-Site<br>Disposal | Total     |
| Materials &<br>Waste       | M&W-1  | Refined materials used on-site                                                                                                        | Tons               | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | M&W-2  | % of refined materials from recycled or reused material                                                                               | 36                 |                        | 5 (COS)     |                     |                                      |           |
|                            | M&W-3  | Unrefined materials used on site                                                                                                      | Tons               | 0:0                    | 17,670.0    | 0.0                 | 0.0                                  | 17,670.0  |
|                            | M&W-4  | % of unrefined materials from recycled or reused material                                                                             | %                  | 1991                   | 0.0%        | -                   | E mar la                             | 0.0%      |
|                            | M&W-5  | On-site hazardous waste disposed of off-site                                                                                          | Tous               | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | M&W-6  | On-site non-hazardous waste disposed of off-site                                                                                      | Tons               | 0.0                    | 0.0         | 0.0                 | 62,910.0                             | 62,910.0  |
|                            | M&W-7  | % of total potential waste recycled or reused                                                                                         | . 96               |                        | 6           |                     | 13.1%                                | 13.1%     |
| Water<br>(used<br>on-silc) | W-1    | Public water use                                                                                                                      | MG                 | 0.0                    | 10          | 0.0                 | 0.0                                  | 1.0       |
|                            | W-2    | Groundwater use                                                                                                                       | MG                 | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | W 3    | Surface water use                                                                                                                     | MG                 | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | W-4    | Reclaimed water use                                                                                                                   | MG                 | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | W-5    | Storm water use                                                                                                                       | MG                 | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | W 6    | Other water resource #1                                                                                                               | MG                 | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | W-7    | Other water resource #2                                                                                                               | MG                 | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.6       |
| Energy                     | E-1    | Total energy used (on-site and off-Site)                                                                                              | MMBm               | 20,595,8               | 80,001 U    | 104.8               | 46,958.4                             | 147,671.0 |
|                            | E-2    | Energy voluntarily derived from renewable resources                                                                                   |                    |                        |             |                     |                                      |           |
|                            | E-2A   | On-site renewable energy generation or use + on-site biodiesel use +<br>biodiesel and other renewable resource use for transportation | MMBha              | 6,592.4                | 0.0         | 84.9                | 0.0                                  | 6,677.3   |
|                            | E-2B   | Voluntary purchase of renewable electricity                                                                                           | MWh                | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | E-3    | Voluntary purchase of RECs                                                                                                            | MWh                | 0.0                    | 0.0         | 0.0                 | 0.0                                  | 0.0       |
|                            | E-4    | On-site grid electricity use                                                                                                          | MWh                | 0.0                    | 52.9        | 0.0                 | 0.0                                  | 52.9      |
| Air                        | A-1    | On-site NOX, SOX, and PM emissions                                                                                                    | Pounds             | 24,581.5               | 4,508.4     | 1343                | 24,741 5                             | 53,963.7  |
|                            | A-2    | On-site HAP emissions                                                                                                                 | Porandis           | 0.4                    | 0.1         | 0.0                 | 0.7                                  | 1.3       |
|                            | A.3    | Total NOx, SOx, and PM emissions                                                                                                      | Pounds             | 28,879.0               | 108,028.9   | 169.6               | \$5,208.2                            | 122,285.8 |
|                            | A-3A   | Total NOx emissions                                                                                                                   | Pounds             | 25,315.1               | 09.508.4    | 146.3               | 50.138.5                             | 145,108.2 |
|                            | A-3B   | Total SOx emissions                                                                                                                   | Poranda            | 3,173.2                | 38,768 3    | 22.1                | 9,079.4                              | 50,493.0  |
|                            | A-3C   | Total PM emissions                                                                                                                    | Porands            | 390.8                  | 252.3       | 1.2                 | 26,040.3                             | 26,684.5  |
|                            | A4     | Total HAP emissions                                                                                                                   | Porands            | 9.9                    | 1,046.4     | 0.0                 | 117.4                                | 1,173.8   |
|                            | A-5    | Total greenhouse gas emissions                                                                                                        | Tons<br>CO2e'      | 1,142.7                | 10,656.5    | 1.9                 | 3,738.6                              | 15,539.6  |









#### Total HAP emissions (pounds)



engineers | scientists | innovators

The second







#### Total Greenhouse Gas Emissions (tons CO2 equiv)



The second





## 5. Results – Cost Analysis

|                                 | Alternative 1 | Alternative 2                  |
|---------------------------------|---------------|--------------------------------|
|                                 | ISS           | Excavation & Off-Site Disposal |
| Treatment Volume (CY)           | 143,530       | 182,350                        |
| Debris Removal (CY)             | 38,820        | -                              |
| Off-Site Disposal Volume (tons) | 62,910        | 251,095                        |
| Backfill Reuse Percentage       | 13%           | 15%                            |
| Total Cost (\$)                 | 7,000,000     | 13,800,000                     |













## 6. Recommendations for Future ISS Implementations



- Preconstruction Bench Scale Study
  - Reusable reagents
  - Locally sourced reagents
- Delivery of reagents in bulk to reduce transportation costs
- Reduction of water to cement ratio as feasibility possible for pumpability to reduce water usage
- Reuse of contact water for grout production
- Use of larger augers to reduce amount overlap mixed material



Source: Robb, C., deGrood, T., Weber, R. "In Situ Stabilization/Solidification (ISS), Another Tool for Remediation of Contaminated Sediments." Western Dredging Association, Midwest Chapter Meeting, Milwaukee, WI, March 11-13, 2015





## 7. Study Summary





Source: Provided by Geo-Solutions, Inc.

D





## Thank You!

Jule Carr

Oak Brook, IL

jcarr@geosyntec.com

**Chris Robb** 

Mequon, WI



crobb@geosyntec.com

