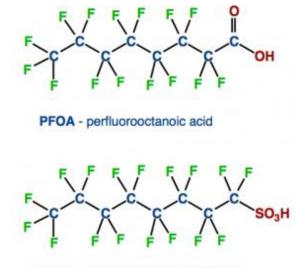
PFC Distribution at Three Unique Release Sites and the Implications on Characterization Design


Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies

May 23, 2017

What are they?

- PFAs are partial to fully fluorinated, organic compounds that have been produced in the largest amounts within the United States
- PFCs are the family of synthetic chemicals that include long chains of carbon and fluorine
- Have unique lipid- and water-repellent characteristics, and are used as surface-active agents in various high-temperature applications and as a coating on surfaces that contact with strong acids or bases

PFOS - perfluorooctanesulfonic acid

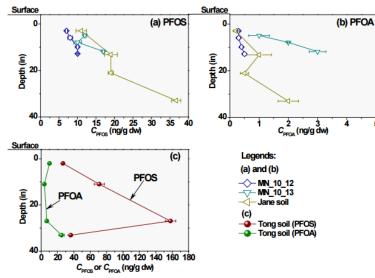
Historic Uses

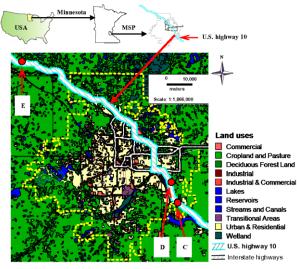
- Used in fire fighting foams, Aqueous Film-Forming Foam (AFFF)
- Also used in industrial and commercial products including:
 - Textiles and leather products (Gore-Tex, Polartec)
 - Metal plating
 - Stain-resistant fabric
 - Photographic industry/photolithography
 - Semi-conductors
 - Paper and packaging (fast food wrappers)
 - Coating additives (Teflon)
 - Cleaning products
 - Pesticides

Release Sources

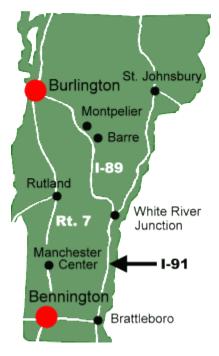
- "Traditional" Release Methods
 - Airborne Emissions from Manufacturing Facilities
 - Fire Training Facilities
 - Fire Responses
 - Spills
 - Landfill Disposal
- "Non-Traditional" Releases/Redistribution Methods
 - Land Application of WWTF Sludge
 - On-Site Septic Disposal Fields
 - Irrigation

Fate & Transport


- Use of PFCs in manufacturing can result in releases to air, water, and soil
- PFCs are extremely stable, and persistent in the environment
- Very soluble, low Koc, low vapor pressures and resistant to degradation
- PFCs deposited into/onto soil can be transported to and contaminate groundwater



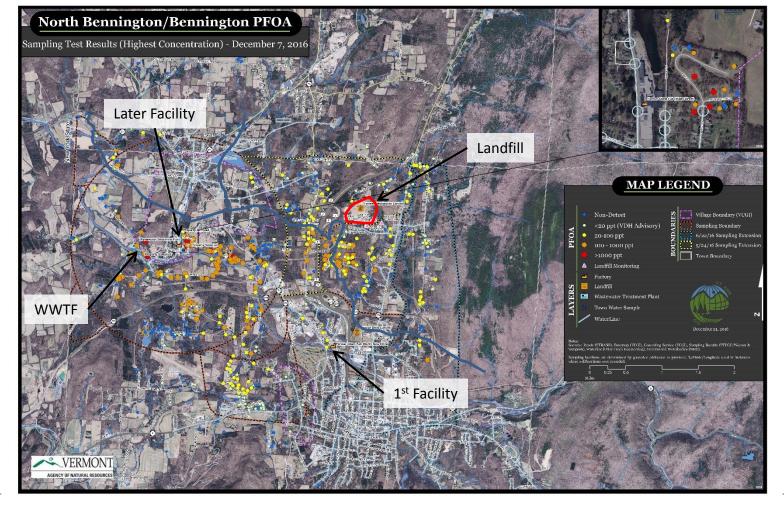
Groundwater Flow

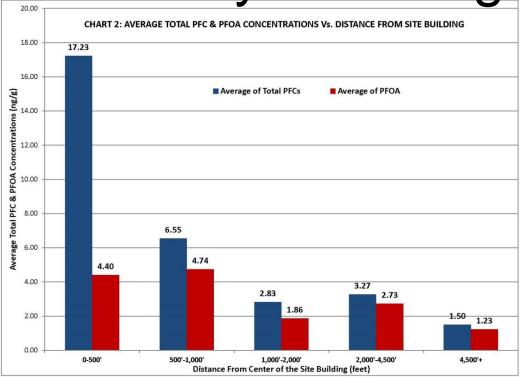

Study of PFOS & PFOA in Soil

Xiao *et al.* (2013). Transport of Perfluorochemicals to Surface and Subsurface Soils. Center for Transportation Studies, University of Minnesota. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/148999.

- Sampled several roadside locations near 3M manufacturing plant
- Found that concentration generally increased with depth of sample collection
- Results imply PFOS & PFOA is not contained to "hot spots"

- Industrial Plant operated in North Bennington from 1970 through 2002. During its operation the facility primarily applied PTFE (Teflon) coatings to fiberglass fabrics by dip coating the fabrics in a liquid bath of micron size PTFE particles and various additives (likely including PFOA) followed by ovens to dry and melt the Teflon onto the fabric.
- Surrounding area uses mix of public and private water supplies and wastewater treatment.
- Wastewater at plant is discharged to WWTF
- Plant in valley bottom with rolling hills surrounding
- Relatively thin soil cover over complex bedrock regime
- Vermont Regulatory Limit of 20 ppt


- Impacted Media
 - Shallow Water Supply Wells
 - Deep Water Supply Wells
 - Shallow Soils
 - Surface Waters
 - Sediment
 - Fish
 - WWTF and Domestic Sludges



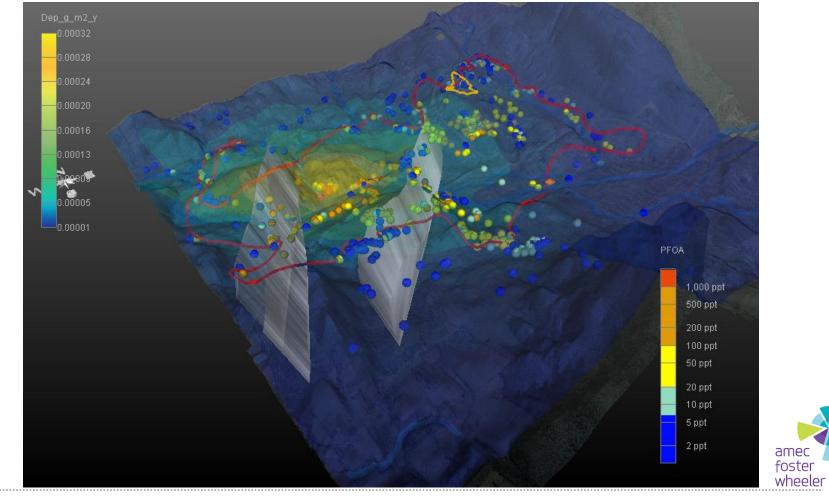
- Potential Sources and Redistribution Methods.
 - Air discharge from manufacturing facility
 - Spills/dumping
 - Contaminated Wastewater discharge to WWTF
 - Pass through to receiving stream
 - Sludge from WWTF spread on farm fields throughout area in 1980's
 - Sludge from WWTF disposed of in local landfill
 - Sludge from WWTF composted and sold in neighboring state
 - Waste materials disposed of in local landfill
 - Contaminated private water supply discharge and pass through to on-site disposal fields
 - Land application of livestock manure from locations with contaminated water supply

Weston (&) Sampson

C.T. Male Assoc.

Weston & Sampson

	Solid (ng/g)	Leachate (ng/L)
WWTF Sludge	7.5	66
Composted Sludge	ND/<0.9	61
Residential	69	430
VTDEC Screening/Std	300	20

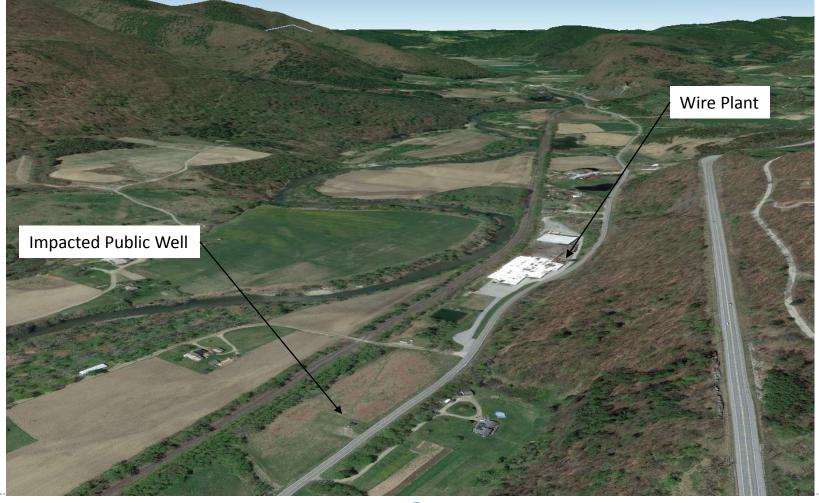

Land Application of WWTF and Residential Septage Occurred Throughout the Area for Years

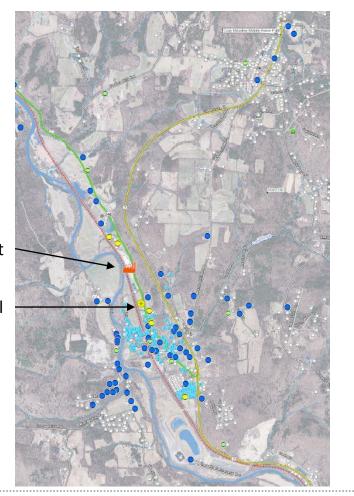
amec foster wheeler

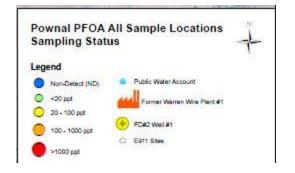
- Airborne Release Dominates Initial Distribution of Contaminants
- Multiple Methods of Redistribution Exist
 - Domestic Septic System Discharges
 - WWTF Discharge
 - Waste Disposal in Landfill
 - Sludge Spreading
- Residual "Source" Remains in Shallow Soils Throughout Area
- "Recycling"/Redistribution is Major Confounding Factor in Impact



- Industrial Plant operated in Pownal from 1948 through 1986. During its operation the facility primarily applied PTFE (Teflon) coatings to wire for the automotive industry.
- Surrounding area uses mix of public and private water supplies and wastewater treatment.
- Public Water Supply Well located 250 meters away
- Plant in valley bottom with rolling hills surrounding
- Relatively thick, sand and gravel aquifer




- Potential Sources and Redistribution Methods.
 - Spills/Dumping from manufacturing facility
 - Minimal air discharge
 - Contaminated wastewater discharge to WWTF
 - Waste materials disposed of in illegal landfill



Weston & Sampson

Wire Plant

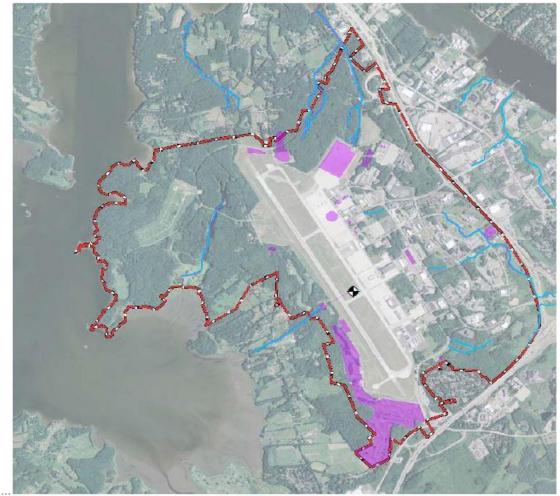
Impacted Public Well

- Terrestrial Releases Dominate Initial Distribution of Contaminants
- Contaminant Migration Appears Dominated by "Predictable" Hydrogeology
- Minimal Methods of Redistribution Exist
 - Active Water Supply Well Causing Flow "Upgradient"
 - WWTF Discharge
 - Waste Disposal in ad hoc Landfill
 - Sludge Spreading?
- Residual "Source" Remains in Shallow Soils Throughout Plant Area

Case Study: Pease

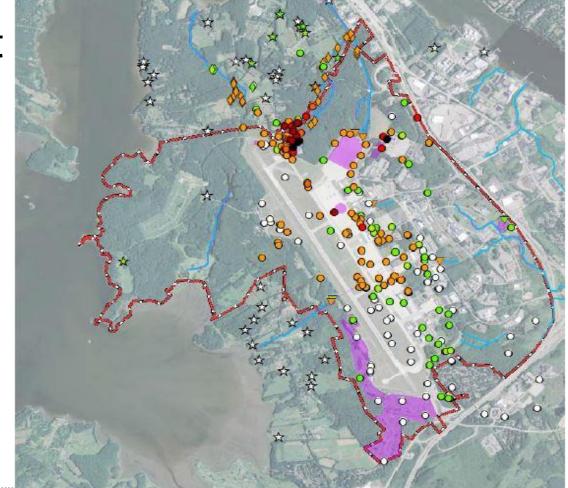
Case Study: Pease

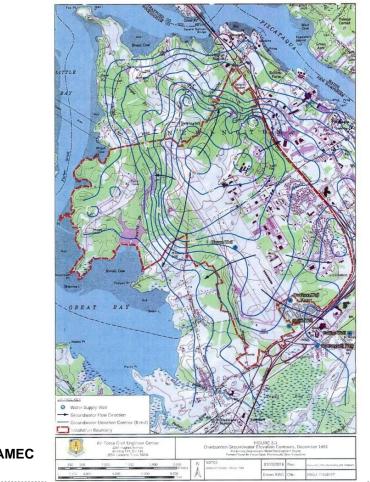
- Pease Tradeport was a Strategic Air Command facility and US Air Force base until 1991.
- AFFF utilized in training and crash responses.
- PFOA, PFOS and precursors identified along with fuels and chlorinated solvents.
- Numerous high producing sand and gravel water supplies for Tradeport and Portsmouth, NH located on-site.
- Now home to a golf course, a commercial airport, and more than 250 businesses employing some 9,500 workers
- Unique aquifer



Pease Tradeport

- Potential Source Locations
 - Fire Training
 - Fire Fighting Equipment Testing
 - Crash Sites
- Redistribution Methods
 - Stormwater System Discharges to Beneath Entire Base Water
 - Supply Well Operations
 - Supply Well Pumping Test Discharge
 - Golf Course Irrigation




Weston & Sampson

Pease Tradeport

- PFAS identified throughout facility and beyond.
 - Shallow soils
 - Deep Soils
 - Groundwater
 - Surface Water

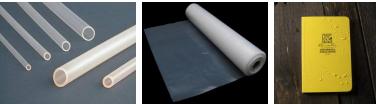
Courtesy of AMEC

Case Study: Pease

- Detailed research into previous AFFF use areas necessary to identify potential source and redistribution locations
- Extensive assessment of multiple source and discharge locations necessary.
- Despite known AFFF use areas, complex hydrogeology and multi-component contaminant plumes made for difficult prediction of plume locations.

Characterization Design Implications

- Detailed research into previous PFAS uses MUST be performed to identify all potential source and distribution methods into a Conceptual Site Model.
 - Volume and types of PFAS and precursors utilized
 - Manufacturing processes
 - application and drying methods
 - AFFF use/training locations
 - Storage, transfer, and waste disposal areas
 - Wastewater treatment and disposal
 - On Site or WWTF
 - Sludge disposal
 - Potential dumping and landfilling areas


Characterization Design Implications

- CSM must address geologic and hydrogeologic conditions assuming little to no retardation of PFAS occurs.
 - Sorption on soils and associated organic carbon is minimal compared to most "traditional" contaminants.
 - Highest soil concentrations likely to be between ground surface and groundwater at airborne deposition locations.
 - Sufficient contaminant mass to cause groundwater contamination above regulatory limits may exist, despite a lack of quantifiable concentrations in solids (soil, sludge, manure).
 - Redistribution mechanisms can be a dominant method of PFAS mass transport into long ranging areas surrounding the "source" location. Potential redistribution methods must be part of the initial CSM.
 - Anticipate an impacted area much larger than expected. (Kilometers not meters)

Characterization Design Implications

- Field characterization methods must be PFAS specific.
 - Most regulatory standards/advisory concentrations are in the part per trillion. Very few molecules of PFAS in a sample can result in exceedances
 - Many "traditional" assessment materials have/had PFAS associated with them
 - Rite in the Rain Notebooks
 - Gore Tex and similiar rainwear
 - Teflon liners in sample jar tops
 - Teflon tubing, pump seals

- Frequent sample duplicates, field and equipment blanks are essential.
- Soil/Solid analyses utilizing SPLP type extraction may be necessary to define risk to groundwater.
- Sites with AFFF and/or multiple PFAS used should consider alternative analysis methods to determine "total" PFAS presence. (Total Oxidizable Precursor Assay).

Questions?

