

A BREATH OF "FRESH AIR"

EVALUATING THE ROLE OF SEWER PATHWAYS IN VAPOR INTRUSION

Preliminary Results from ESTCP Project ER-201505

Thomas McHugh, Ph.D., D.A.B.T. Lila Beckley, P.G. GSI Environmental

Battelle Bioremediation Symposium May 2017

Why Sewer VI?

Many examples of sewer VI. No good investigation protocol.

ESTCP Project Technical Objectives

Improve our current understanding of the role of preferential pathways at vapor intrusion sites.

1	
_	ノ

- Determine how commonly preferential pathways contribute to vapor intrusion.
- Develop improved conceptual model with key risk factors for sewer/utility tunnel vapor intrusion.
- 3

THIS

TALK:

Develop and validate an investigation protocol: initial site screening, field testing, delineation.

Present preliminary findings.

Understanding the Role of Sewers:

- <u>Groundwater to Sewer</u>
 <u>Attenuation</u>: What are VOC
 <u>Concentrations in Sewer</u>
 <u>Manholes</u>?
- <u>Sewer to Building</u>
 <u>Attenuation</u>: Do VOCs Move from Sewers into
 Buildings?
- <u>Updated Conceptual Model</u>: How Common Are Sewer Preferential Pathways?

WHERE: MANHOLES WITHIN FOOTPRINT OF GW PLUME (OR IMMEDIATELY DOWNSTREAM)

HOW: COLLECT VAPOR SAMPLE FROM BOTTOM OF MANHOLE

Sites Tested:

- 1) Near USEPA Research House, IN
- 2) Moffett Field, CA
- 3) Houston, TX Dry Cleaner Sites
- 4) Near ASU Research House, UT
- 5) Bay Area, CA TCE Plumes

1) Near USEPA Research House

1) Near Indianapolis House

1) Near Indianapolis House

1) Near Indianapolis House (Duplex)

PCE Conce	ntrations:	
Median:	36 µg/m³	
Max:	353 µg/m³	(32x Indoor Air SL)
32% were >	10x Indoor	Air SL

Assumed PCE indoor air screening level = $11 \mu g/m^3$ (USEPA May 2016 RSL Tables (Residential))

2) Moffett Field

TCE Concentrations:Median: $97 \ \mu g/m^3$ Max: $1,494 \ \mu g/m^3$ (500x Indoor Air SL)65% were > 10x Indoor Air SL

Assumed TCE indoor air screening level = $3 \mu g/m^3$ (USEPA May 2016 RSL Tables (Commercial))

3) 9 Dry Cleaner Sites, Houston, Texas - PCE

Assumed PCE indoor air screening level = $11 \mu g/m^3$ (USEPA May 2016 RSL Tables (Residential))

3) 9 Dry Cleaner Sites, Houston, Texas - TCE

Assumed TCE indoor air screening level = $0.48 \mu g/m^3$ (USEPA May 2016 RSL Tables (Residential))

4) Near ASU Research House

TCE Concentrations (May 2016):Median: $40 \ \mu g/m^3$ Max: $1,100 \ \mu g/m^3$ (93x Indoor Air MAL)41% were > 10x Indoor Air MAL

Hill AFB TCE mitigation action level for indoor air 11.8 ug/m³ (2.2 ppbV)

Results from ESTCP Project ER-201501, <u>The VI</u> <u>Diagnosis Toolkit for Assessing Vapor Intrusion</u> <u>Pathways</u>. Thanks to Yuanming Guo, Paul Dahlen, and Paul Johnson. Contact Dr. Yuanming Guo at Yuanming.Guo@asu.edu

- 4) Near ASU Research House More!
 - Multiple rounds of testing (up to 277 manholes per round)

- TCE distributed sporadically in utility systems
- Conc range ND to 2,700 µg/m³
- > 50% of results greater than 10x Indoor MAL

5) Bay Area, CA TCE Plumes

Results from Entanglement Technologies, Inc. using their AROMA instrument. Contact Bruce Richman at 650-204-7875.

TCE Concentrations:Median: $4.5 \ \mu g/m^3$ Max: $1,315 \ \mu g/m^3$ (2,740x Indoor Air SL)49% were > 10x Indoor Air SL

Assumed TCE indoor air screening level = 0.48 µg/m³ (USEPA May 2016 RSL Tables (Residential))

Understanding the Role of Sewers:

- <u>Groundwater to Sewer</u>
 <u>Attenuation</u>: What are VOC
 Concentrations in Sewer
 Manholes?
- <u>Sewer to Building</u>
 <u>Attenuation</u>: **Do VOCs Move** from Sewers into
 Buildings?
- <u>Updated Conceptual Model</u>: How Common Are Sewer Preferential Pathways?

KEY QUESTIONS:

Gas flow from sewer line into building? Attenuation factor?

Sites Tested:

- 1) ASU Research House, UT
- 2) Indianapolis Duplex, IN
- 3) Office Building, Moffett Field, CA

1) ASU Research House

Sewer/Building Combination	Land Drain Manhole	Sanitary Sewer
Tested:	to House	Manhole to House
Attenuation	20x – 40x	60x – 80x

2) Indianapolis Duplex

Combined Storm/Sanitary	Upstream Manhole to	Downstream
Sewer Connection Tested:	House	Manhole to House
Attenuation	160x – more than 1000x	50x – 100x

3) Moffett Field Office Building

<u>YES</u> - detected tracer in all buildings tested

Range of Sewer to Building Attenuation?

	Land Drain System	Sanitary Sewer System
ASU House:	20x – 40x	60x – 80x
Indy Duplex:	Upstream Manhole 160x - >1000x	Downstream Manhole 50x – 100x
	Sanitary Manhole	Telephone Manhole
Moffett:	1300x - >2500x	45x – 50x

Understanding the Role of Sewers:

- <u>Groundwater to Sewer</u>
 <u>Attenuation</u>: What are VOC
 Concentrations in Sewer
 Manholes?
- <u>Sewer to Building</u>
 <u>Attenuation</u>: Do VOCs Move from Sewers into
 Buildings?
- <u>Updated Conceptual Model</u>: How Common Are Sewer Preferential Pathways?

Conceptual Model

Sewer/Utility Pathway: Conceptual Model

1) VOCs often detectable in sewers/utility tunnels close to VOC plumes in groundwater.

2) VOCs can move from sewers into buildings (50x to 1000x attenuation???)

KEY Sewer/Utility Tunnel pathway should be considered *POINT:* during VI investigations.

1) SEWER INTERSECTS CONTAMINATED GW

2) SEWER IN VADOSE ZONE ABOVE CONTAMINATED GROUNDWATER

KEY QUESTION:

How important is depth of sewer line relative to groundwater?

1) SEWER INTERSECTS CONTAMINATED GW

2) SEWER IN VADOSE ZONE ABOVE CONTAMINATED GROUNDWATER

PRELIMINARY ANSWER:

VOCs can be detected in sewer manholes in vadose zone above groundwater plumes.

Sewer/Utility Pathway: Conceptual Model

Screen In Conditions

1) SEWER INTERSECTS CONTAMINATED GW

2) **DISCHARGE INTO SEWER**

3) SEWER INTERSECTS NAPL

Possible Concern

SEWER IN VADOSE ZONE ABOVE CONTAMINATED GROUNDWATER

Sewer/Utility Pathway: Conceptual Model

Problems we have never seen:

 VOC migration through sewer backfill

VOCs <u>OUTSIDE</u> Sewer:

STCP

Who cares?

VOCs **INSIDE** Sewer:

Potential concern.

Buried utility lines

 (i.e., lines are NOT inside utility tunnel)

KEY Overly broad definition of "preferential pathway"*POINT:* creates confusion; makes it harder to find the real problems.

Sewer/Utility Tunnel Preferential Pathway

Next Challenges

- Screen in/screen out logic: When should we test the sewers for VOCs?
- Spatial/temporal variability: How many locations? How many times?
- Sewer screening levels: What VOC concentration inside a sewer manhole is a potential concern?

ESTCP ER-201505 Project Team

Thomas McHugh, Ph.D., D.A.B.T. – Pl Lila Beckley, P.G.

DoD

GSI

<u>Environmental</u>

Ignacio Rivera-Duarte, Ph.D. – Navy, SPAWAR Steven Hammett – Navy, NAVFAC Daniel Groher, P.E. – Army, Corps of Engineers Kyle Gorder, P.E. – Air Force, Hill AFB Erik Dettenmaier, Ph.D. – Air Force, Hill AFB

USEPA

Rich Kapuscinski, USEPA HQ Alana Lee, USEPA Region 9