Lowering the Carbon Footprint of Thermal Remediation Systems

James Baldock, Jen Brett, Simon Tillotson and Jay Dablow

© Copyright 2017 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

The business of sustainability

Carbon Footprint Reduction: Approach

ERM has integrated consideration of sustainability with key stages in project delivery

- Remedial Options Appraisal
 - Multi Criteria Analysis
- Remedial Design
 - Thermal Modelling
 - Equipment Design
 - BMPs

- Remedial Optimisation
 - Temperature Tracking
 - Low Temperature Volatilisation (LTV)
 - Post Thermal Biodegradation

Background

- ERM designed an In-Situ Thermal Desorption (ISTD) system
- Implemented inside a building, at an operational manufacturing site in the UK
- Long manufacturing history
- The system was implemented following 10 years of unsuccessful operation of a pump and treat system
- Organic compounds mainly kerosene and chlorobenzene. Also localised TCE & methylene chloride. All at concentrations >100mg/l
- Method based approach agreed with regulatory authorities

Geology, Hydrogeology, Hydrology

System Installation

5 The business of sustainability

Completed Well Field

The business of sustainability

6

Vapour / Liquid Phase Treatment Systems

The business of sustainability

7

Remedial Options Appraisal

Multi Criteria Analysis (MCA) Methodology

Sustainability criteria	Weight		First	
Environment	(1-5)	Justification of Weighting and Comments	impo	
Impact on water	5	pollutant linkage is through water th		
Impact on soil	1	soil impact is not the driver of risk	Input	
Impact on air	5	GHG emissions primary metric	instru	
Impact on ecology	3	eco-receptor is one of two drivers	them	
Natural resource use and waste generation	4	magnitude of Corp Environmental Policy on CO2	Curre	
Intrusiveness	3	impacts on site management and personnel	(i.e. v	
Social			, tree	
Human health	5	critical concern to site and ERM		
Safety	5	critical concern to site and ERM	na	
Ethical and equity considerations	1	'do nothing' would be poor corporate care	∎ hu	
Policy and legislative compliance	5	Regulators have requested action on source area		
Impact on surroundings	2	will be on a visible part of site		
Uncertainty, evidence and verification	1	not critical consideration, effort driven	leç	
Community involvement & satisfaction	3	Local Authority and neighbouring amenity concerns		
Economic				
Direct costs	3	to be confirmed by Corporate EHS		
Indirect costs	3	costs due to partial site access closure, and vibrations may slo	w site works	
Legacy and projects risks	5	Corporate concerns driving the project		

First MCA exercise is to weight the importance of the different metrics in this specific circumstance.

Input from other stakeholders is very instructive – shows what is important to them

Currently, the most important factors (i.e. with biggest weight) are:

- impact on water and air
- natural resource use and waste
- human health and safety
- compliance with regulators
- legacy and project risk

9

MCA Results

		Do		MPE Three		
Sustainability criteria		nothing	Excavation	years	Thermal	MPE 6 months
	Weighting					
Environment	(1-5)	-		-		
Impact on water	5	-2	5	2	4	1
Impact on soil	1	-2	5	1	4	0
Impact on air	5	-1	-2	-3	-4	-1
Impact on ecology	3	-2	5	1	4	0
Natural resource use and waste generation	4	0	-1	-2	-3	-1
Intrusiveness	3	0	-5	-3	-1	-1
Social					-	
Human health	5	0	-1	0	0	0
Safety	5	0	-4	-2	0	-1
Ethical and equity considerations	1	-2	0	0	0	0
Policy and legislative compliance	5	-2	4	2	4	1
Impact on surroundings	2	0	-2	0	1	1
Uncertainty, evidence and verification	1	0	3	0	0	0
Community involvement & satisfaction	3	-2	-4	0	0	0
Economic						
Direct costs	3	5	-3	-2	-3	-1
Indirect costs	3	0	-3	0	0	0
Employment opportunities & human capital	1	0	0	0	0	0
Gearing	1	0	0	0	0	0
Legacy and projects risks	5	-2	5	1	4	1
Flexibility	1	0	0	0	0	0
Net environmental benefit		-23	16	-18	1	-7
Net social benefit		-18	-18	0	22	2
Net economic benefit		5	7	-1	11	2
Overall net-benefit (Sustainability)		-36	5	-19	34	-3
RANK		5	2	4	1	3

MCA Conclusions

Thermally enhanced DPVE (using conductive heating) was the preference for the following reasons:

- Health & safety and logistical challenges of soil excavation alternative:
 Social factors dominant
- High probability of success compared to all other in-situ techniques.
- A higher maximum technically-achievable mass removal compared to other in-situ techniques
- The only in-situ technique that can realistically reduce the residual DNAPL contaminant mass (thought to be the majority) within relatively low permeability strata

Remedial Design

Thermal Modelling

A thermal model using Petrasim PC based software was carried out to:

- Evaluate heating methodology and associated heat energy consumption;
- Predict heating duration;
- Determine the optimum well spacing to achieve the Target Treatment Temperature (TTT) in the most energy efficient manner

Model Results

A variety of well configurations were modelled

The optimum configuration showed that significant contaminant reduction was predicted to occur with 3.0m well spacing after 120 days of heating (co-boiling point of kerosene and water)

Equipment Design

- Sustainable procurement: Both gas and electric ISTD options considered – gas has a lower carbon footprint and cost in the UK so was selected (not the case everywhere!)
- Process engineering: heat exchangers added to minimise carbon use
- Real time monitoring: automated temperature collection data using thermocouples

Best Management Practises

BMP	
Assure suitable sizing of in-well heating units, to optimize energy use	
Include feedback loops in the process control system, to allow precise application of heat and the desired temperature and duration	
Explore the use of natural gas-fired systems that enable in-well combustion of the contaminants and recovery of associated heat, resulting in lower energy demand	
Increase automation through use of equipment such as electronic pressure transducers and thermo-couples with an automatic data logger (rather than manual readings) to record data at frequent intervals	
Monitor soil temperatures on a regular basis to assure uniform heating in target areas and avoid unexpected heating and energy waste in non-targeted areas	

Office of Solid Waste and Emergency Response (5203P)

Green Remediation Best Management Practices: Implementing In Situ Thermal Technologies

Remedial Optimisation

Temperature Tracking

The business of sustainability

Low Temperature Volatilization (LTV)

Initial target temperature based on traditional volatilization

LTV Concept:

- Groundwater contains dissolved gases
- During in situ heating, chemical and biochemical reactions occur that increase the concentrations/partial pressures of the dissolved gases
- CO₂ generated and released can also remove VOC contamination
- At this site lowered treatment temperatures from ~150°C to an average of 80°C (heating time 80 days compared to the 120 modelled)
- Benefits: lower energy use, carbon footprint, cost and time to complete

Mass Recovery

VOC and CO₂ Concentrations Over Time

ERM

Carbon Footprint (kg CO₂ eq)

Post Thermal Biodegradation

The business of sustainability

Summary

- Thermal projects are energy intensive, but rapidly completed, meaning overall energy consumption may be lower than expected
- If a thermal remedy is selected a combination of sustainable design and implementation can reduce CO₂ footprint
- Target temperature was significantly lower than initially expected using the LTV approach in combination with real time monitoring, leading to CO₂ reductions
- LTV:
 - 10% reduction in both time and costs to be realised (heating equipment removed from site earlier)
 - CO₂ consumption reduced by circa 16%
- Longer term biodegradation can be successfully applied post thermal

Endpoints achieved and the project was 'closed'

