# Green and Sustainable Remediation Analysis: Coal Ash Surface Impoundment Closure

Ali Boroumand, Ph.D. Kurt Herman, M. Eng.

Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies (Battelle)

May 24, 2017



#### **Background on Federal CCR Rule**

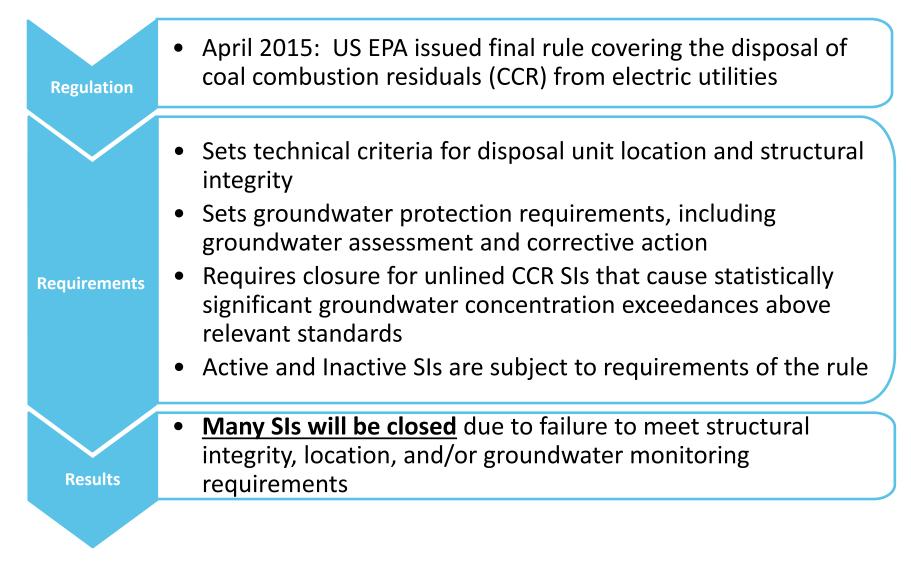


#### ENVIRONMENTAL PROTECTION AGENCY

40 CFR Parts 257 and 261

[EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER]

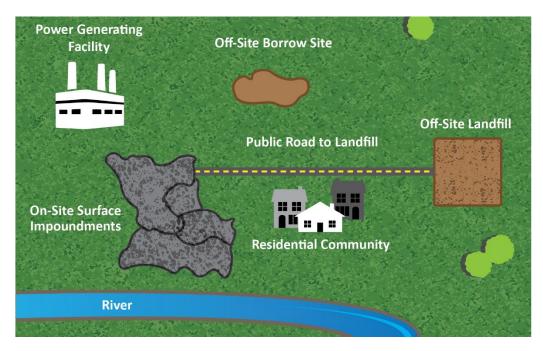
RIN-2050-AE81


Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities

AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule.






## **Background on Federal CCR Rule**





## **Closure by Removal or Closure in Place?**

- Safety and environmental sustainability can be scientifically evaluated for each alternative
- This is part of the EPRI Framework\* to holistically evaluate closure options



\*Electric Power Research Institute (EPRI), *Relative Impact Framework for Evaluating Coal Combustion Residual Surface Impoundment Closure Options*, 3002007543, 2016.



#### **Environmental Impact Assessment**

#### 40 CFR 1502.14 Alternatives including the proposed action

This section is the heart of the environmental impact statement...it should **present the environmental impacts of the proposal and the alternatives in comparative form**, thus sharply defining the issues and providing a **clear basis for choice among options by the decisionmaker and the public**.

Estimated costs for SIs ranging from 10 to 250 acres:

- Closure in Place (\$) \$3.5M to \$150M per SI
- Closure by Removal (\$\$\$) \$15M to \$2,700M per SI



## **Framework for Comparing Closure Alternatives**

#### Complexity

| Pathway                                                       | Contaminant<br>Release | Contaminant<br>Concentrations | Regulatory<br>Benchmark Analysis                                | Risk Assessment                                                    |
|---------------------------------------------------------------|------------------------|-------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|
| Groundwater (GW)<br>CCR Leaching to GW                        | Total flux             | Time-weighted<br>average      | Time above maximum<br>contaminant level (MCL)<br>State Criteria | Drinking water                                                     |
| Surface Water (SW)<br>CCR Leaching to GW &<br>Discharge to SW | Total flux             | Time-weighted<br>average      | Time above MCL<br>Time above aquatic<br>benchmark               | Drinking water<br>Recreator<br>Fish ingestion<br>Aquatic organisms |
| <b>Air</b><br>Fugitive Particulate<br>Matter (PM) & Diesel    | Total emissions        | $PM_{10}$ and $PM_{2.5}$      | Time above National<br>Ambient Air Quality<br>Standard (NAAQS)  | Inhalation risks                                                   |
| <b>CCR</b><br>Direct Contact                                  | N/A                    | N/A                           | N/A                                                             | Dermal<br>Incidental<br>ingestion                                  |

#### Data needs and level of analysis



### **Framework for Comparing Closure Alternatives**

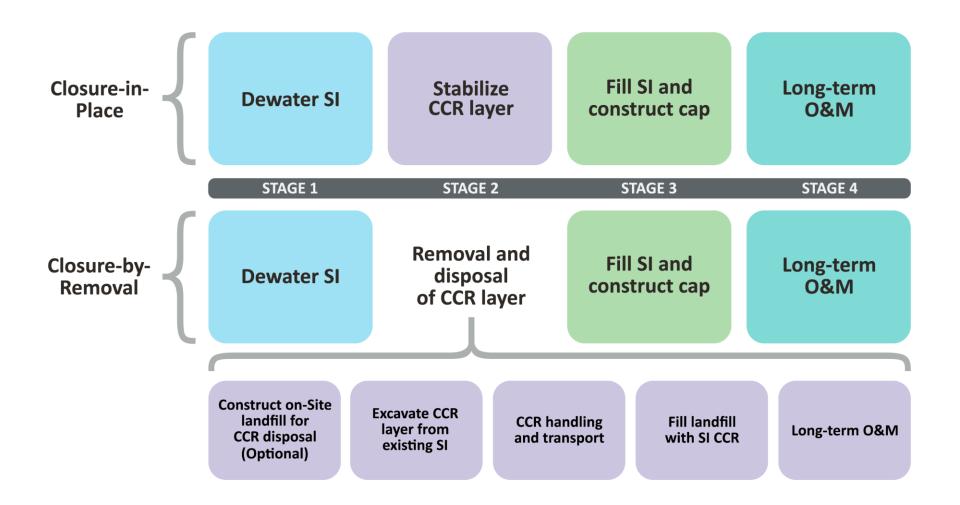
#### **Topic of This Presentation**

#### Complexity

| Pathway        | Case study methodology                                                                                                                                      | Other possible metrics                                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Sustainability | Greenhouse gas emissions<br>NO <sub>x</sub> , SO <sub>x</sub> , PM <sub>10</sub> air emissions<br>Energy consumption<br>Water usage<br>Resource consumption | Land use/value<br>Monetization<br>Noise/vibration<br>Environmental Justice |
| Safety         | Worker injuries and fatalities<br>Truck accidents leading to:<br>-Truck driver injuries and fatalities<br>-Community injuries and fatalities                | Years of Potential Lost Life                                               |

Data needs and level of analysis

#### **Evaluated Metrics**




#### Outline

- Methodology
- Results from Case Studies
- Conclusions



## **Define work elements for each closure option**





## **Estimate Sustainability Impacts**

#### SiteWise

SiteWiseTM Tool for Green and Sustainable Remediation has been developed jointly by United States (US) Navy, United States Army Corps of Engineers (USACE), and Battelle. This tool is made available on an as-is basis without guarantee or warranty of any kind, express or implied. The US Navy, USACE, Battelle, the authors, and the reviewers accept no liability resulting from the use of this tool or its documentation; nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of SiteWiseTM tool and interpretation or use of the results provided by the tool are the sole responsibility of the user. The tool is provided free of charge for everyone to use, but is not supported in any way by the US Navy, USACE, or Battelle. |









SiteWise<sup>™</sup> provides calculation sheets and default lookup tables for estimating the environmental footprint of remedy alternative components.

#### **Key Inputs**

Material usage

Water and electricity usage

Equipment use

Personnel, materials, and equipment Transportation **Key Outputs** 

Total energy consumption

Greenhouse gas emission

On-site and total SO<sub>x</sub>

On-site and total NO<sub>x</sub>

On-site and total PM<sub>10</sub>



## **Estimate Sustainability Impacts**

Example: Environmental Impacts of a hypothetical work element evaluated using SiteWise<sup>™</sup>

#### Earthwork Equipment

| Equipment Type | Power  | Hours |
|----------------|--------|-------|
| Excavator      | 150 HP | 5,000 |
| Dozer          | 335 HP | 4,500 |

#### Personnel hours and Transport

| Туре                  | Hours  | Distance traveled<br>(mile) |
|-----------------------|--------|-----------------------------|
| Construction laborers | 13,000 | 15,000                      |
| Site supervisors      | 2,000  | 2,000                       |
| Engineers             | 400    | 500                         |

#### Material Use and Transport

| Equipment Type | Weight<br>(ton) | Distance from<br>Source (mile) |
|----------------|-----------------|--------------------------------|
| HDPE Liner     | 700             | 50                             |
| Geocomposite   | 380             | 50                             |
| Top Soil       | 12,000          | 10                             |

|                          | GHG Emissions<br>(ton) | Energy Used<br>(MMBTU) | NOx Emission<br>(ton) | SOx Emission<br>(ton) | PM10 Emission<br>(ton) |
|--------------------------|------------------------|------------------------|-----------------------|-----------------------|------------------------|
| Consumables              | 2,741                  | 92,686                 | 7                     | 11                    | 2                      |
| Transportation-Personnel | 7                      | 84                     | 0                     | 8.69E-05              | 5.01E-04               |
| Transportation-Equipment | 0                      | 0                      | 0                     | 0                     | 0                      |
| Equipment Use and Misc.  | 208,206                | 11,560                 | 1                     | 5                     | 1                      |



#### **Estimate Worker Risks**

Analysis of fatality/injury rates ("Incidence Rates") published by US Bureau of Labor Statistics

• Incidence Rate = (N/EH) x 20,000,000

Notes: (N/EH) = Injuries/hour worked. 20,000,000 = 10,000 FTEs (40 hrs/wk x 50 wks/yr).

| Occupation            | Incidence Rate<br>(per 10,000 workers) | Number of Injuries (N) | Total Hours (EH) |
|-----------------------|----------------------------------------|------------------------|------------------|
| Overall               | 109.4                                  | 1,162,210              | 2.1E+11          |
| Police                | 490.9                                  | 28,170                 | 1.2E+09          |
| Construction Laborers | 302                                    | 20,710                 | 1.4E+09          |
| Engineering           | 17                                     | 3,510                  | 4.18E+09         |

Example – 2013 Nonfatal Occupational Injuries



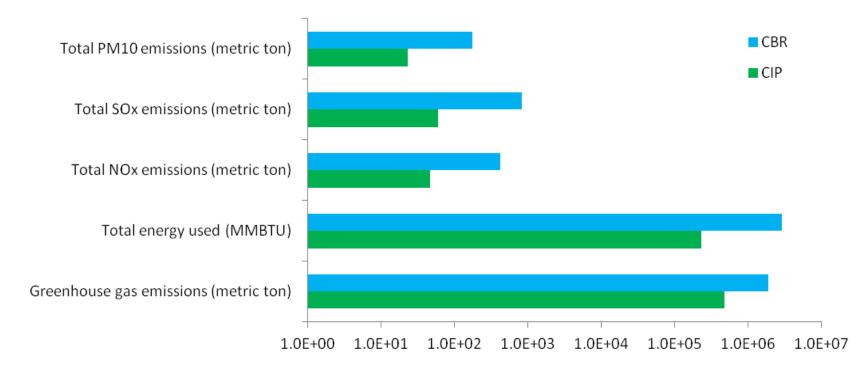
## Estimate Community and Worker Risks from Truck Crashes

| Output Parameters                               | Remedy Parameter<br>Required | Data Source                                                            |  |
|-------------------------------------------------|------------------------------|------------------------------------------------------------------------|--|
| Number of large truck crashes                   |                              |                                                                        |  |
| Number of large truck crashes with fatalities   | Truck mileage<br>driven      | US Department of<br>Transportation; Large Truck<br>and Bus Crash Facts |  |
| Number of large truck crashes with injuries     |                              |                                                                        |  |
| Occupant (truck driver) fatalities/injuries     | Truck mileage                | US Department of<br>Transportation; Large Truck                        |  |
| Non-occupant (community)<br>fatalities/injuries | driven                       | and Bus Crash Facts                                                    |  |



#### Outline

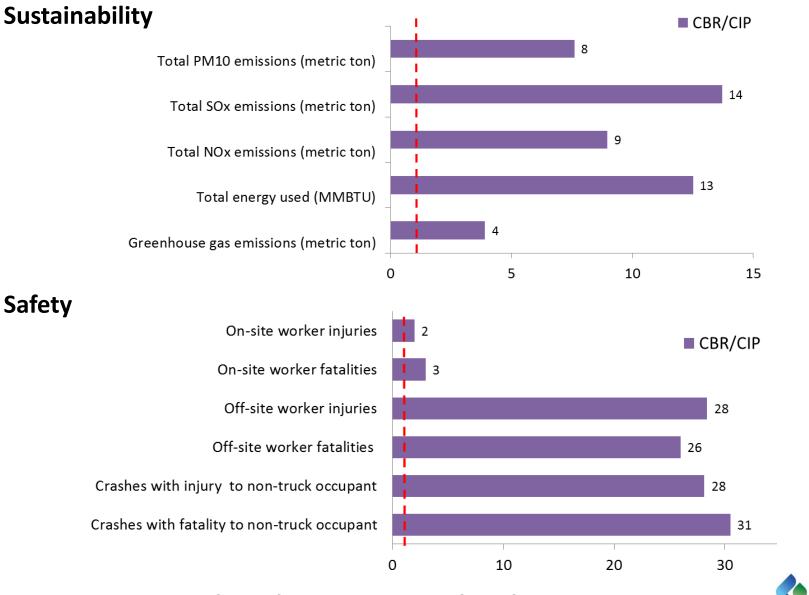
- Methodology
- Results from Case Studies
- Conclusions




#### **Case Study Sites**

| Site                                   | Site A | Site B |
|----------------------------------------|--------|--------|
| SI Area (acres)                        | 90     | 371    |
| CCR Volume (yd <sup>3</sup> )          | 3.6M   | 10.4M  |
| Distance to Landfill (miles)           | 20     | 37     |
| Distance to Closest Community (miles)  | 2      | 0.1    |
| Average CCR Thickness (feet)           | 25     | 20     |
| Distance to Soil Depot (miles)         | 10     | 10     |
| Dump Truck Capacity (yd <sup>3</sup> ) | 15     | 15     |




## **Results - Sustainability Metrics (Site A)**



| Outcome Metric                                | СІР     | CBR       |
|-----------------------------------------------|---------|-----------|
| Greenhouse gas emissions (metric ton)         | 481,052 | 1,884,452 |
| Total energy used (MMBTU)                     | 229,001 | 2,868,140 |
| Total NO <sub>x</sub> emissions (metric ton)  | 47      | 422       |
| Total SO <sub>x</sub> emissions (metric ton)  | 60      | 823       |
| Total PM <sub>10</sub> emissions (metric ton) | 23      | 175       |



## Impacts – Sustainability and Safety (Site A)



CBR = Closure by Removal; CIP = Closure in Place

## Similar Method, Different Site

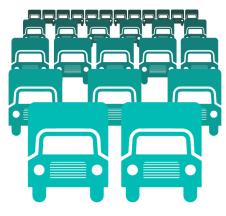




CBR = Closure by Removal; CIP = Closure in Place

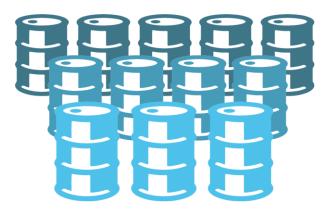
## The Impact of Trucks (Site A)

|               | Parameter                             | Value                       |
|---------------|---------------------------------------|-----------------------------|
|               | SI Area                               | 90 acres                    |
| SI Parameters | Average CCR Thickness                 | 25 feet                     |
|               | CCR Volume                            | 3,630,000 yd <sup>3</sup>   |
|               | Truck Capacity                        | 15 yd <sup>3</sup>          |
| Assumptions   | Truck Trip/day                        | 100 roundtrips              |
| Assumptions   | Work hours                            | 5 days/week,<br>8 hours/day |
|               | Total Truck Trips                     | 240,000 round trips         |
| Calculations  | CCR Removal Time                      | 9 years                     |
|               | Interval between trucks seen on roads | 5 minutes<br>each trip leg  |









## **Summary of Outcome Metrics (Site A)**

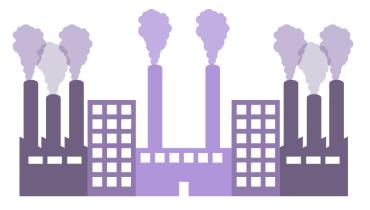
**Truck Activity & Community Risks** 



CBR is 28x CIP

**Energy Consumption** 




CBR is 12x CIP

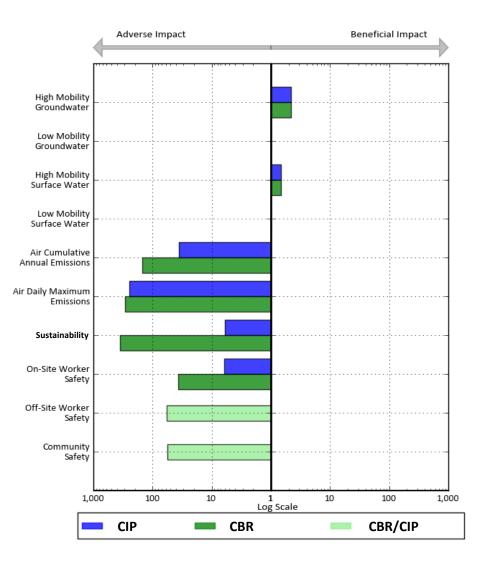
**Worker Risks** 



**CBR is 3x CIP** 

**Air Emissions** 




**CBR is 8x CIP** 



CBR = Closure by Removal; CIP = Closure in Place

## How does this relate to the Framework?

- High mobility constituents in groundwater and surface water:
  - Both CIP and CBR have beneficial impacts compared to baseline
  - CIP and CBR have similar results
- Air:
  - Both CIP and CBR have adverse impacts compared to baseline
  - CBR has more adverse impacts than CIP, especially when considering cumulative emissions over the time period of closure
- Sustainability and safety:
  - Both CIP and CBR have adverse impacts compared to baseline
  - CBR impact is more adverse





#### **Conclusions**

- Provides a well-precedented, scientifically-defensible method to evaluate closure adverse impacts (and benefits)
- Adverse impacts of CBR were always greater than CIP, up to 20-fold, depending on the outcome metric
- Promotes selection of a more protective & sustainable closure alternative





CBR = Closure by Removal; CIP = Closure in Place

#### **Questions?**



#### Ali Boroumand aboroumand@gradientcorp.com

**Further Information:** Electric Power Research Institute (EPRI), *Relative Impact Framework for Evaluating Coal Combustion Residual Surface Impoundment Closure Options*, 3002007543, 2016.

Electric Power Research Institute (EPRI), *Relative Impact Framework Application for a Hypothetical Coal Combustion Residual Surface Impoundment*, 3002007544, 2016.

Herman, K. 2014. "Actuarial risk analysis to promote National Contingency Plan (NCP)consistent remediation." *Remediation* 24 (3):11-19.

