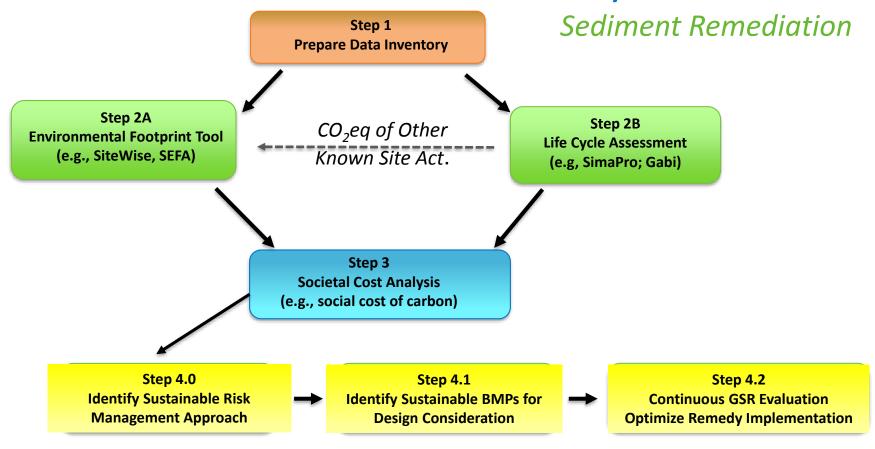
Comparison of Environmental Evaluation Tools and Incorporation of Monetized Socioeconomic Damages for Sediment Remediation Projects

Melissa Harclerode, PhD, ENV SP

May 25, 2017

Battelle's Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies


Miami, Florida May 22-25, 2017

Outline

- Two Options for Sediment Remediation Sustainability Assessments
 - Env. Footprint evaluation
 - Life cycle assessment (LCA)
- Incorporate societal cost analysis
- Case Study
- Sensitivity Analysis & Data Gaps
- Takeaways

Sustainability Assessment:

Study Question

• How do the outcomes compare?

Step 2A Footprint Evaluation Tool

Step 2B Life Cycle Assessment

Case Study w/ Two AOCs

Site Background

Location

- Coastal inlet connected to the Atlantic Ocean
- Two Areas of Concern (AOCs)
- Contaminants
 - PCBs: 50 to 3,600 mg/kg
 - PAHs and heavy metals also present
- Sources
 - Former transformers
 - Releases during site operations or building demolition

USGS WAUSP Website

Site Characteristics

- Socio-economic
 - Former industrial area
 - Up-and-coming neighborhood

Ecological

- Impacted species: invertebrates, sport fish, piscivorous birds, humans
- Fish consumption advisory currently in place; recreational water sports are allowed

Remedial Component	Sustainability Assessment Input Parameters	AOC-1	AOC-2
Excavation	Excavator operation, steel sheeting, and transport of sediment	X	
Dredging	Excavator/crane operation, watercraft/barge operation, and transport of sediment	X	Х
In Situ Treatment	Watercraft/barge operation, conveyor belt system for distribution, activated carbon		X
Dewatering	System materials, including activated carbon, polyvinyl chloride pipe, geotextile membrane, coagulant, and raw materials (i.e., gravel)	X	X
Waste Disposal	Transport of excavated sediment, water, and debris; and landfill operations	X	X
Restoration	Excavator and loader operation, and raw materials (i.e., soil, gravel and sand)	X	X
Engineering Controls	Silt/turbidity curtain materials (i.e., geotextile membrane, polyethylene pipe, polystyrene, and steel) plywood, filter log, and raw materials (i.e., asphalt and gravel)	X	X

Sustainable Impact Assessment

Step 1 Prepare Data Inventory

Remedy Components

- dredging
- dewatering
- engineering controls
- backfill/amendments
- decontamination pad
- off-site disposal

Step 2A Environmental Footprint Tool Using SiteWise™ V. 3.1

CO₂eq

Step 2B
Life Cycle Assessment
(using SimaPro)

"Other Known On-site Activities"

- geotextile membranes
- crane mats
- vitrified clay pipe
- amendments

Step 3.0
Societal Cost Analysis
(e.g., social cost of carbon)

Sustainable Impact Assessment

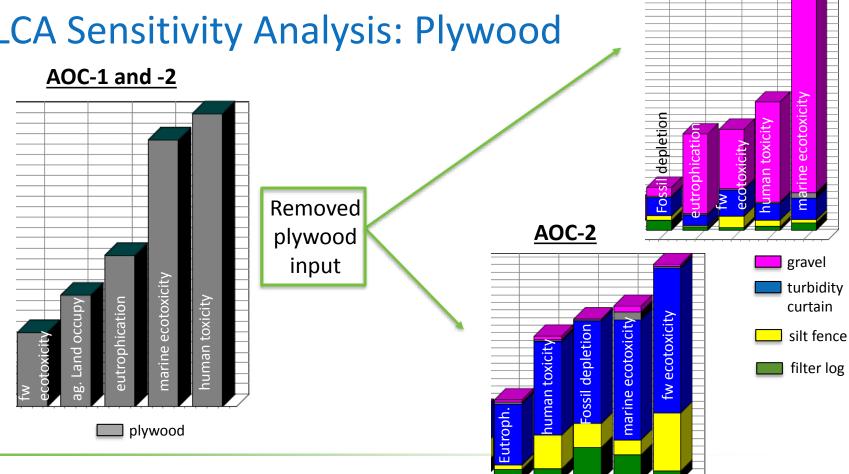
Societal cost analysis:

Normalization into one unit for ease of comparison

	Footprint Evaluation								LCA Evaluation										
Remedial Component	CO ₂ Em	nissions		Total SO _x Emissions		otal PM ₁₀ Emissions	Mo	onetized Global Impacts	Allocation of Impacts			CO₂ eq		SO₂ eq		PM ₁₀ eq	Мо	onetized Global Impacts	Allocation of Impacts
Area of Concern 1																			
Mobilization/ Engineering Controls	\$ 1,65	54,174.82	\$	623,683.45	\$	122,896.34	\$	2,400,754.61	78.29%		\$	1,673,516.93	\$	624,632.14	\$	122,988.39	\$	2,421,137.47	68.69%
Dewatering	\$ 42	29,380.22	\$	110,308.61	\$	15,122.46	\$	554,811.29	18.09%		\$	840,275.91	\$	193,325.37	\$	29,907.37	\$	1,063,508.65	30.17%
Dredging AOC 1	\$	1,902.73	\$	249.00	\$	37.18	\$	2,188.91	0.07%		\$	2,013.91	\$	614.91	\$	126.68	\$	2,755.50	0.08%
Excavation	\$	5,654.34	\$	1,441.77	\$	147.09	\$	7,243.19	0.24%		\$	2,755.16	\$	817.26	\$	190.65	\$	3,763.07	0.11%
Reconstruction and Stabilization	\$ 1	17,665.66	\$	5,690.30	\$	1,110.97	\$	24,466.93	0.80%		\$	4,607.86	\$	1,841.15	\$	434.15	\$	6,883.16	0.20%
Waste Disposal	\$ 5	57,881.44	\$	5,436.34	\$	13,758.19	\$	77,075.97	2.51%		\$	18,458.51	\$	6,953.30	\$	1,469.13	\$	26,880.94	0.76%
Area of Concern 2																			
Mobilization/ Engineering Controls	\$ 12	27,858.08	\$	48,026.34	\$	9,476.81	\$	185,361.23	15.66%		\$	129,605.12	\$	48,289.10	\$	9,489.42	\$	187,383.64	13.62%
Dewatering	\$ 58	39,671.95	\$	145,505.86	\$	21,072.96	\$	756,250.77	63.90%		\$	699,085.98	\$	161,580.38	\$	25,024.33	\$	885,690.70	64.35%
Insitu	\$ 16	50,440.82	\$	27.27	\$	1.47	\$	160,469.55	13.56%		\$	170,973.40	\$	37,886.84	\$	12,302.23	\$	221,162.47	16.07%
Dredging	\$	5,144.42	\$	673.23	\$	100.53	\$	5,918.18	0.50%		\$	5,445.01	\$	1,662.55	\$	342.51	\$	7,450.07	0.54%
Reconstruction	\$	9,805.90	\$	1,753.23	\$	282.79	\$	11,841.92	1.00%		\$	1,240.47	\$	543.15	\$	124.99	\$	1,908.61	0.14%
Waste Disposal	\$ 4	17,711.41	\$	4,487.83	\$	11,357.71	\$	63,556.95	5.37%		\$	49,906.34	\$	18,799.67	\$	3,972.09	\$	72,678.09	5.28%

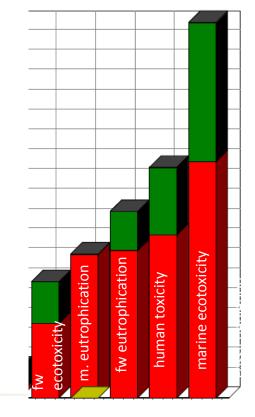
Comparison of AOC Primary Impact Contributors

- AOC-1 Engineering Controls
 - Consumes more raw materials (e.g., gravel and plywood)
 - Requires less linear footage of the turbidity/silt curtain


- AOC-2 Dewatering
 - Consumes more coagulant*
 - Generates less wastewater
 - Requires a smaller dewatering pad (consisting of PVC pipe and geotextile membrane)

^{*}coagulant also in situ treatment major impact component, not the watercraft/barge operation

Sensitivity Analysis & Data Gaps


Engineering Controls LCA Sensitivity Analysis: Plywood

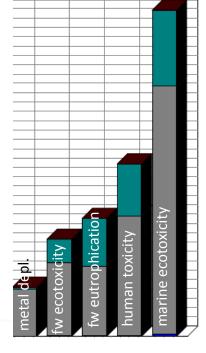
AOC-1

Remedial Components LCA Sensitivity Analysis: Remove Plywood

 Engineering controls no longer a primary impact contributor

LCA Sensitivity Analysis

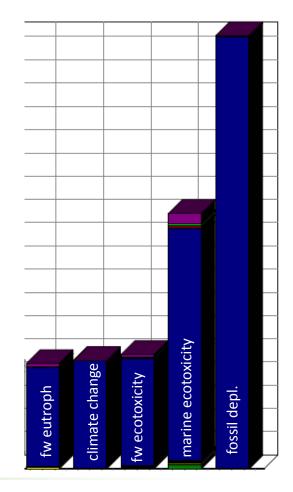
Dewatering: coagulant is the main impact contributor

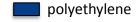

w eutrophication numan toxicity ecotoxicity

In Situ Treatment: coagulant and hopper are

coagulant

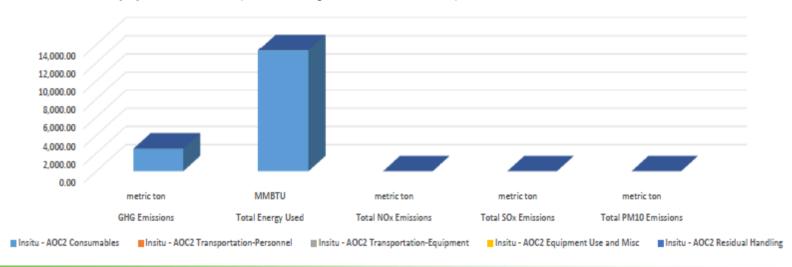
hopper

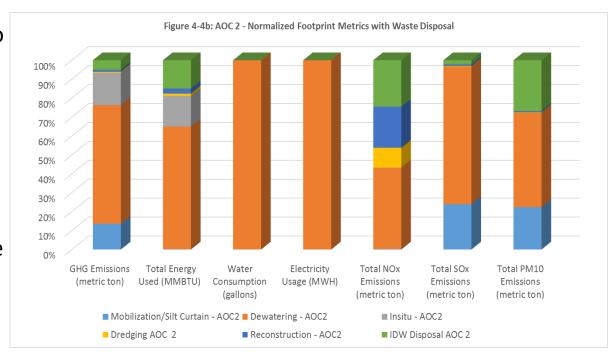

the main impact contributors



coagulant

LCA Sensitivity Analysis: Dewater Component


- Removed the plywood, amendments, and hopper inputs
 - Dewatering is the main impact contributor
 - Polyethylene is the main parameter driving unsustainable impacts


Sensitivity Analysis: Dewater/In Situ Components Environmental Footprint

 Footprint evaluation identified amendments and polyethylene as main contributors to environmental impacts, not hopper use (identified in LCA)

Data Gap: Environmental Footprint

- Footprint evaluation also identified restoration and waste disposal as significant NO_x emission contributors
- LCA does <u>not</u> quantify NO_x emissions, therefore underestimated footprint

Normalization of Units Societal Cost Analysis

 Confidence in labeling waste disposal as secondary impact contributor and not restoration

Shows difference in *considering NO_x emissions

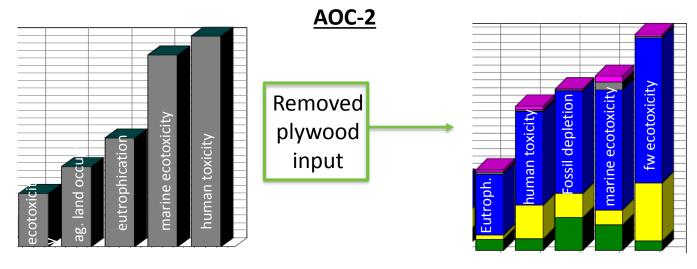
	Environmental									
Remedial	Footpritnt	LCA								
Component	Analysis	Evaluation								
Social Cost	Allocation of Impacts									
	of Concern 1									
	THE UT COILCIN I									
Mobilization/										
Engineering Controls	65.27%	68.69%								
Dewatering	28.04%	30.17%								
Dredging	0.14%	0.08%								
Excavation	0.43%	0.11%								
Resoration	1.40%	0.20%								
Waste Disposal	4.72%	0.76%								
Area	of Concern 2									
Mobilization/	_									
Engineering Controls	10.38%	13.62%								
Dewatering	63.58%	64.35%								
Insitu	15.77%	16.07%								
Dredging	0.75%	0.54%								
Restoration	1.54%	0.14%								
Waste Disposal	7.98%	5.28%								

Takeaways

Remedial Approach Selection

- Site-specific parameters influence identification of primary impact contributors
 - AOC-1 engineering controls vs. AOC-2 dewatering

- Footprint evaluation and LCA method were comparatively similar
 - Lower cost solution = environmental footprint tool


Optimization for Sustainability

- Consumables drive sustainability impacts
 - Plywood, amendments, polyethylene = future research need

- Footprint analysis vs. LCA method not comparable in identifying secondary impact contributors
 - Normalization (monetary damages) of metrics aided decision-making process

Societal Cost Analysis for LCA

- Normalizes impact categories to avoid direct comparison of one impact category to another
 - E.g., reducing human toxicity vs. freshwater ecotoxicity

Societal Cost Analysis: Added Value

- Ability to integrate socio-economic costs and benefits not represented by an environmental impact evaluation tool
 - Ecosystem services
 - Wetland banking
 - Property value
 - Aesthetics value

Thank You & Questions

Melissa Harclerode, PhD, ENV SP

Phone: 732-590-4616

E-mail: harclerodema@cdmsmith.com

- Michael E. Miller, PhD, CDM Smith
- Michaela Bogosh, PE, CDM Smith
- Pankaj Lal, PhD, Montclair State University

