

Bioelectrochemically-enhanced *In Situ* Biodegradation of Benzene and Other Petroleum Contaminants in Groundwater

Song Jin, Ph.D., CHMM

Advanced Environmental Technologies, LLC Fort Collins, Colorado

May 24, 2017

ACKNOWLEDGEMENT

Co-authors:

- Paul Fallgren, Advanced Environmental Technologies, LLC, Fort Collins, Colorado
- Matthew Larsen, CGRS Inc., Fort Collins, Colorado
- Jennifer Strauss, Division of Oil and Public Safety, Department of Labor and Employment, Denver, Colorado

OUTLINE

- Introduction to bioelectrochemical technologies (E-Redox[™])
- Technology applications
 - Bio-oxidation of petroleum hydrocarbons
 - E-Redox[™] (O) technology description
 - E-RedoxTM (O) case studies

E-RedoxTM (O)

Biodegradation of Petroleum Hydrocarbons

- Capable microorganisms (e.g., bacteria, species and populations)
- Organic compounds (e and c source) and bioavailability
- Nutrients
 - Macro-nutrients: nitrogen, phosphorus...
 - Micro-nutrients: trace metals...
- Electron Acceptors
 - O₂, NO₃⁻, SO₄²⁻, Fe³⁺, organics, CO₂...
- Electron transfer bio-oxidation

Benzene Biodegradation Vs. Different TEAs				
Aerobic:	$C_6H_6 + 7.5O_2 → 6CO_2 + 3H_2O$ $\Delta G = -3069 \text{ kJ/mol}$			
Denitrification:	$C_6H_6 + 6NO_3^- + 6H^+ → 6CO_2 + 3N_2 + 6H_2O$ $\Delta G = -2895 \text{ kJ/mol}$			
Iron-reduction:	$C_6H_6 + 30Fe(OH)_3 + 60H^+ → 6CO_2 + 30Fe^{2+} + 78H_2O$ ∆G = -492 kJ/mol			
Sulfate-reduction:	$C_6H_6 + 3.75SO_4^{2-} + 7.5H^+ → 6CO_2 + 3.75H_2S + 3H_2O$ ∆G = -116 kJ/mol			
Methanogenesis:	$C_6H_6 + 4.5H_2O → 3.75CH_4 + 2.25CO_2$ $\Delta G = -29 \text{ kJ/mol}$			

E-RedoxTM

Benzene Biodegradation Rates (with nutrient amendments)

E-Redox[™]: 585 ug/L/day Aerobic: 400 ug/L/day Denitrifying: 251 ug/L/day Sulfidogenic: 189 ug/L/day Methanogenic: lowest to negligible

Electricity generated in the E-RedoxTM system serves as an indicator for biodegradation and provides a weak power source (\sim mA/m²)

(Lu et al. Environ. Sci. & Technol., 2014)

CASE STUDY 1

- Location: fuel station, ~2 street blocks area, Denver, CO
- Main COC: benzene in groundwater
- Lithology: silty to clayey sand in the vadose zone, clay in the saturated zone starting 15 ft bgs
- Other Site Notes
 - Groundwater flow rate estimated at 0.04 ft/day
 - Past remediation efforts involved injections of chemical oxidants and/or carbonbased materials
- Project Objectives

Implementation of E-Redox[™] technology for *in situ* degradation of benzene and other hydrocarbon contaminants in the groundwater

- Conducted field pilot test of two E-Redox[™] units at the end of the 3rd Quarter 2015
- Expanded to full-scale implementation with eight additional E-Redox[™] units (10 total units)
- E-Redox[™] installations in four areas
 - 4 units in the fuel station source area
 - 2 units in a residential/commercial alley
 - 2 units along street in residential area (monitoring wells 7-11 ft from E-Redox[™] wells)
 - 2 units by a restaurant parking lot
- Evaluated performance and operations
 - Maintenance and modifications required due to fluctuations in depth-to-water

- Significant groundwater level shift during the 4th quarter 2016 caused blanket increase in benzene levels onsite
- E-Redox[™] units modified at the site to accommodate groundwater level fluctuations
- Overall decrease in benzene level throughout the site since

Case Study 1 Summary

>Benzene biodegradation was substantially enhanced (5x of control NA)

➢ For the two wells started in 2015, benzene concentrations decreased to and maintained at lower concentrations when comparing 4th Quarter measurements for 2015 and 2016

► ROI measured > 11 ft

➤Modifications to E-RedoxTM design minimize the influence from fluctuating groundwater levels

CASE STUDY 2

- Location: former petroleum plant facility, Lafayette, CO
- Main COC: benzene in groundwater
- Lithology: sandy clay to clay in the vadose zone, silty sand in the saturated zone underlain by sandstone 12-30 ft bgs
- Other Site Notes
 - 375 cubic yards of soil excavated in 2007
 - Implementation area surrounded by wells with ORC socks
- Project Objectives

Field implementation of the E-Redox[™] technology for *in situ* degradation of benzene and other hydrocarbon contaminants in the groundwater

- Field pilot of single E-Redox[™] unit started first quarter 2017
- Other remedial methods include surface application of nutrients solid and ORC socks in various locations
 - DO and ORP measurements at monitoring wells near the E-Redox[™] well indicate little influence of the ORC socks

Date	Voltage, mV		
1/16/17	2.7		
2/8/17	25.1		
3/28/17	64.9		
4/12/17	573		

- Modification applied to the E-Redox[™] unit to ensure continued performance even with changes to groundwater level
- Continue to monitor unit voltage and benzene of the surrounding monitoring wells
- Monitor DO and ORP of surrounding monitoring wells

92% decrease in benzene concentration after one month of operation

Date	Benzene, mg/L	Toluene, mg/L	Ethylbenzene, mg/L	Xylenes, mg/L	TVPH, mg/L
12/23/16	1.69	0.033	1.63	6.14	47.3
2/16/17	0.138	0.001	0.187	0.676	4.72

E-Redox[™] (O) Summaries

✓ E-Redox[™] technology significantly enhances biodegradation of BTEX, TPH-GRO, TPH-DRO and other petroleum hydrocarbons, e.g., >5x rate for benzene in GW, >10x for TPH-DRO in sediments

✓ Modular, sustainable, no energy input, almost no maintenance

- ✓ Voltage generation within the E-Redox[™] device correlates with active biodegradation activities and can serve as a remote monitoring parameter
- ✓ E-Redox[™] works best when matrix contains abundant water, conductivity is high, and electron acceptor is deficient
- ✓ E-Redox[™] can be a stand-alone tool or synergistically used with other remedial technologies (e.g., biostimulation, bioaugmentation, nutrients addition, carbon injection, chemOx, SVE, etc.)

Thank you

Song Jin sjin@aetecs.com sjin@uwyo.edu