School of Chemical, Biological and Environmental Engineering

Effects of Chlorinated Methanes on the Reductive Dehalogenation of TCE

Emma Ehret, Mohammad Azizian, Lewis Semprini

Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies

Abstract #557

Miami, Florida

May 24, 2017

Carbon Tetrachloride (CT) Transformation

Ehret - May 24, 2017 - OREGON STATE UNIVERSITY 1

Maximum utilization rate (k_mX) for each addition = *Proxy for microbial health*

Background: Time of Exposure to CMs Day 0 addition Day 14 addition ▲ TCE ■ DCE ◆ VC ● ETH ▲ TCE ■ DCE ◆ VC ● ETH **CE + ETH Mass (µmol)** 0.8 2.0 0.2 0.4 0.6 1.0 0.0 4.0 6.0 8.0 0.0 10.0 Time (days) Time (days)

< 24 hr to ethene

200+ hr to ethene

Background: Time of Exposure to CMs

Ehret - May 24, 2017 - OREGON STATE UNIVERSITY 4

First 24 hours: 2.3µM CT

CT transformation!

- Does <u>direct CF injection</u> affect the system's CE rates and H₂ utilization the same as CT?
- 2. Are non-CF **CE** rate effects due to **CT** <u>concentration</u> or its <u>transformation</u>?
- 3. Does <u>recovery</u> differ between direct **CF** and **CT** exposed reactors?

1. Direct CF Exposure: Long Time

- Day 0: no
 difference
 from control
 - Day 14: Rates decrease LESS than with CT treatment (84, 85, 98%)

1. CF Exposure: Short Time

VC rate is
 20 times
 higher at
 Day 2 CF
 treatment.

Short time
 CT effects
 are NOT
 due to CF
 alone.

1. CT vs CF: H₂ Utilization

CT transformation inhibits **H**₂ uptake more than exposure to **CF**.

Ehret - May 24, 2017 - OREGON STATE UNIVERSITY 9

1. Does <u>direct CF</u> injection affect the system's CE rates and H₂ utilization the same as CT?

NO. The full CM effect is not due to CF alone.

- 2. Are **CE** rate effects due to **CT** <u>concentration</u> or its <u>transformation</u>?
- 3. Does <u>recovery</u> differ between direct **CF** and **CT** exposed reactors?

1. Does direct **CF** injection affect the system's **CE** rates and H_2 utilization the same as **CT**?

2. Are non-CF CE rate effects due to CT <u>concentration</u> or its <u>transformation</u>?

3. Does <u>recovery</u> differ between direct **CF** and **CT** exposed reactors?

2. CT Concentration Effect

- Higher [CT] leads to slower rates
- VC rate effect not as apparent
- Possible concentration effect.

2. First 24 hours: 2.3 vs 7.5µM CT

Ehret - May 24, 2017 - OREGON STATE UNIVERSITY 13

2. Multiple Spike CT Delivery

- Different delivery of the same CT mass
- TCE added
 Day 2
- Compare rates to Day
 2 single spike

1. Does <u>direct **CF** injection</u> affect the system's **CE** rates and H₂ utilization the same as **CT**?

2. Are non-CF CE rate effects due to CT <u>concentration</u> or its <u>transformation</u>?

CT transformation products are highly suspect.

Does <u>recovery</u> differ between direct CF and CT exposed reactors?

- 1. Does <u>direct **CF** injection</u> affect the system's **CE** rates and H₂ utilization the same as **CT**?
- 2. Are **CE** rate effects due to **CT** <u>concentration</u> or its <u>transformation</u>?
- 3. Does <u>recovery</u> differ between direct CF and CT exposed reactors?

3. Recovery Potential: Post-CF Exposure

Slight rate recovery shown upon CF removal.

3. Recovery Potential: Post-CT Exposure

- 1. Does <u>direct **CF** injection</u> affect the system's **CE** rates and H₂ utilization the same as **CT**?
- 2. Are **CE** rate effects due to **CT** <u>concentration</u> or its <u>transformation</u>?
- 3. Does <u>recovery</u> differ between direct CF and CT exposed reactors?

Yes; possible in CF reactors, unlikely in CT reactors.

Future Work

- Cysteine as a radical trap
- Chemostat CM exposure transient tests
- B12 supply & homoacetogen contribution

Acknowledgments

- Kyle Vickstrom
- National Science Foundation
- Oregon State University

References

- (1) Vickstrom, K. E.; Azizian, M. F.; Semprini, L. Transformation of carbon tetrachloride and chloroform by trichloroethene respiring anaerobic mixed cultures and supernatant. *Chemosphere* 2017, 182, 65–75.
- (2) ATSDR ToxFAQs[™]: Carbon Tetrachloride https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=195&tid=35 (accessed May 18, 2017).
- (3) ATSDR ToxFAQs[™]: Chloroform https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=52&tid=16 (accessed May 19, 2017).
- (4) Aulenta, F.; Majone, M.; Tandoi, V. Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. *J. Chem. Technol. Biotechnol.* **2006**, *81* (9), 1463–1474.
- (5) Berggren, D. R. V. Kinetic and molecular effects of sulfate reduction on a dechlorinating culture under chemostat growth conditions. **2011**.
- (6) Azizian, M. F.; Semprini, L. Simultaneous anaerobic transformation of tetrachloroethene and carbon tetrachloride in a continuous flow column. *J. Contam. Hydrol.* **2016**, *190*, 58–68.
- (7) Azizian, M. F.; Marshall, I. P. G.; Behrens, S.; Spormann, A. M.; Semprini, L. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column. *J. Contam. Hydrol.* **2010**, *113* (1–4), 77–92.
- (8) Marshall, I. P. G.; Azizian, M. F.; Semprini, L.; Spormann, A. M. Inferring community dynamics of organohalide-respiring bacteria in chemostats by covariance of rdhA gene abundance. *FEMS Microbiol. Ecol.* **2014**, *87* (2), 428–440.
- (9) Mayer-Blackwell, K.; Azizian, M. F.; Machak, C.; Vitale, E.; Carpani, G.; de Ferra, F.; Semprini, L.; Spormann, A. M. Nanoliter qPCR Platform for Highly Parallel, Quantitative Assessment of Reductive Dehalogenase Genes and Populations of Dehalogenating Microorganisms in Complex Environments. *Environ. Sci. Technol.* **2014**, *48* (16), 9659–9667.