A Novel Approach in Biodegradation of low concentrated water pollutant, Diethylhexyl phthalate: using Self-Aligned Facile Silver Nanoparticles Namasivayam Vasudevan*, Annamalai Jayshree Centre for Environmental Studies, Department of Civil Engineering, CEG Campus, Anna University, Chennai- 600025, India "Email- nvasudevan@annauniv.edu

Introduction

- Phthalate esters (PEs) are benzo-carboxylic acids used in the manufacture of PVC and other plastic products
- These are priority chemical pollutants-listed as potential endocrine disruptors PEs are not covalently bond to polymer matrixes and tend to leach readily into the environment
- Bacterial strains in the environment are efficient in utilising PEs
 Biodegradation rate of PEs decreases as the molecular weight of PEs increases
- Apart from molecular weight- concentration, chemical nature and efficiency of micro organisms are important factors affecting biodegradation of PEs Based upon the chemical properties of PEs: C_{10} , C_{11} and C_{12} esters are most hydrophobic and least soluble in water (< 0.001 mgL⁻¹)
- Hydrophobicity and low concentration reduces the probability of PE contact to bacterial cells, in turn decreasing the rate of efficient degradation

To overcome this- improved cell surface and hydrophobic resistant bacterial cells are needed Silver nanoparticles being good catalysts for most chemical

catalysts for most chemical reactions, an attempt was made to biosynthesise self-aligned silver nanoparticles (SA-Ag-NPs) over bacterial cell surface

Fig. 1 Group of Phthalate esters

Effect of SA-Ag-NPs in improving hydrophobicity and surface area for biodegradation was studied

DEHP-a high molecular weight PE, commonly used plasticiser was selected for the study

Objectives

- Assessment of bacterial strain to hydrolyse and degrade DEHP at low concentration
- Biosynthesis of facile self-aligned silver nanoparticles (SA-Ag-NPs) onto bacterial cell surface
- Analysis of SA-Ag-NPs toxicity over bacterial growth and tendency to improve degradation of low concentrated pollutant, DEHP

Results and Discussion

Bacterial strain used in the study was capable of utilising DEHP at the concentration of 1000 mg L⁻¹ and the complete degradation occured within 144 h The nature of bacterial growth in MSM changed based on the concentration of DEHP available; from small granular pattern to aggregated cells floating over the medium.

Changes in growth morphology may be due to stress, hydrophobicity, cellular toxicity, nature of interaction and availability of substrate

Synthesis of facile SA-Ag-NPs

200 300

time period upto 120 h

-ak +sr Wegength,(m)_esk +tak Fig. 2. UV-Visible spectra of SA-Ag-NPs; inset-SEM photograph of Ag-NPs Exitation of surface plasmons due Ag-NPs increased with the increase of

Morphological changes in bacterial cells in response to DEHP

- The minimal concentration 1 μg L-1 followed by 10, 50, 100 and 500 μg L-1 did not show any morphological changes.
- The cells were elongated, did attach to each other nor formed aggregates (Fig 4a).
- While at 1000 µg L⁻¹ concentration- aggregation of cells, decrease in number of elongated cells, shortening of rods and and formation of thick mass of colonies occured (Fig. 4b, c, d and e)
- Beyond 120 h physical and morphological structure of bacterial cells distorted and shrunk (Fig. 4f).
- Aggregation of bacterial cells could be an adaptation response to DEHP, in order to decrease interaction with toxic substrate and metabolites formed during degradation.
- Similar morphological changes occured even among with SA-Ag-NPs trated bacterial cells (Fig. 5 a,b).
- After 72 h of incubation, showed self-alignment of Ag-NPs over the bacterial surface started (Fig. 5c, d).
- Figure 5 e and f shows completely self-aligned Ag-NPs of bacterial cells incubated for 120 h and above.

Biodegradation of DEHP at various concentration

- After 72 h, the residues of DEHP drastically started to decrease; the % of DEHP remained in the medium without SA-Ag-NPs were almost 73, 1 and 10 % for 1, 100 and 1000 µg L¹ (Fig. 6)
- The inoculated bacterial cells as inoculum had cell count of 10⁴ CFU mL⁴; while, at the end of experiment (after 120 h)-CFU mL⁴ were 12. 35. 46. 89. 98. 109 x 10⁶ at various concentrations of DEHP;
- 12, 35, 46, 89, 98, 109 X 10° at various concentrations of DEH 1, 10, 50, 100, 500 and 1000 ug L⁴
- With SA-Ag-NPs, complete utilisation of 1 and 10 µg L⁻¹ DEHP occured within 72 h (Fig. 7)
- Presence of SA-Ag-NPs has improved viable bacterial cell count even at low concentrations (1, 10 and 50 μ g L); CFU mL⁻¹ were 32, 35, 52, 91, 108, 126 x 10⁶ at various concentrations of DEHP: 1, 10, 50, 100, 500 and 1000 μ g L⁻¹

Growth rate and kinetic parameters in DEHP degradation

Various concentration of	Without SA-Ag-NPs			With SA-Ag-NPs		
DEHP amended in MSM	Growth rate	Total DEHP	DEHP utilisation	Growth rate	Total DEHP	DEHP utilisation
(µg L-1)	(h ⁻¹)	degradation (%)	rate (h ⁻¹)	(h-1)	degradation (%)	rate (h ⁻¹)
MSM	0.003 ± 0.001	•	•	0.006 ± 0.003	•	•
1	0.012 ± 0.001	27 ± 3	0.012 ± 0.008	0.044 ± 0.008	99 ± 1	0.178 ± 0.001
10	0.018 ± 0.005	37 ± 4	0.069 ± 0.005	0.042 ± 0.012	99±1	0.175 ± 0.007
50	0.023 ± 0.009	54±1	0.097 ± 0.012	0.038 ± 0.005	97 ± 2	0.169 ± 0.013
100	0.024 ± 0.012	99 ± 2	0.167 ± 0.003	0.037 ± 0.001	96±3	0.157 ± 0.006
500	0.025 ± 0.008	97 ±3	0.161 ± 0.004	0.035 ± 0.012	96 ±3	0.152 ± 0.010
1000	0.036 ± 0.003	90±4	0.153 ± 0.010	0.032 ± 0.009	95 ± 2	0.148 ± 0.004

- Growth rate of bacterial cells at 100 µg L⁻¹ of DEHP showed twice increase in cell density when compared to low concentartion of 1 µg L⁻¹ (Table 1)
- Total degradation rate was also observed to be directly proportional as it
- was thrice increase in degradation rate at 100 μg L 1 than 1 μg L 1
- In presence of SA-ag-NPs, total degradation of DEHP at low concentration of 1 µg L¹ was three time higher than degradation without SA-Ag-NPS(Table 1)
- In both the cases, growth of bacterial cells showed shorter period of lag phase and followed Monod first order kinetics

Conclusion

- SA-Ag-NPs proved to have promising role in bioremediating low concentrated pollutant, DEHP from surface water and wastewater
- Ag-NPs tends to improve hydrophobicity, surface area and interaction between compound and bacteria; in turn facilitating enhanced utilisation of DEHP by bacterial cells.
- This study could also serve the purpose of bioremediating other low concentrated toxic water pollutants rather than PEs by efficiently synthesising SA-Ag-NPs on bacterial cell surface.

Fig. 3 Bacterial growth in MSM without and with SA-Ag-NPs

 After 72 h, bacterial growth without SA-Ag-NPs reveals the presence of DEHP onto the surface of the cells
 Bacterial cells with SA-Ag-NPs are less glossy revealing efficient utilisation of DEHP