

Brad Elkins, PG EOS Remediation, LLC

Co-authors: Bilgen Yuncu, PhD, PE and Robert Borden, PhD, PE

2017 Battelle Bioremediation Symposium

Enhanced Bioremediation

Choosing the Right Substrate

Some considerations to take into account:

- Source Treatment or Bio-Barrier
- Lithology and Heterogeneity dictates distribution
- Groundwater Velocity
- Substrates Degrade at Various Rates
 - Soluble Substrates Typically short life (weeks to months)
 - Emulsified Vegetable Oil (EVO) Typically long life (years)
- Subsurface Retention Varies Based on:
 - Lithology
 - Characteristics of the substrate

Design Considerations

- Treatment zone dimensions
 - Width perpendicular to flow (x)
 - Length along GW flow direction (y)
 - Contact time (velocity of GW)
 - Effective vertical height (z)

- Amount of oil
 - Oil required for biodegradation, including competing e- acceptors
 - Oil droplet retention by sediment
- Number and spacing of injection wells

Design Considerations

Oil requirement

```
Mass of oil = x * y * z * ne * \rho_B * O_R
```

x = Treatment zone length parallel to GW flow (ft)

y = Design width perpendicular to GW flow (ft)

z = height (ft)

ne = Effective porosity (unit less)

 ρ_B = Sediment bulk density (lb./ft³)

 O_R = Oil retention (wt./wt.)

Oil Retention: the amount of oil that sorbs to an aquifer grain

What is Oil Retention

Oil retention is a function of

- Droplet size
- Zeta potential of sediments and droplets
 - Most clays have a net negative charge
 - Negatively charged droplets will have lower retention
- Surfactant type
 - Non-ionic typically have lower sorption
 - lonics have higher sorption (lecithin sorption is very high)

Colloidal Transport of 'Insoluble' Particles

- Small particles / droplets ($<5\mu m$) easily pass through most pores ($30-100\mu m$)
- Particles / droplets are retained when they stick to sediment surfaces
- To be retained:
 - Droplet must first 'bump' into sediment
 - Properly charged space must be available
 - Droplet must attach

Collision Frequency vs Diameter

Three Processes Effect Collision of a Particle in Typical Porous Environmental Media

- Brownian Motion
- Straining/Settling
- Physiochemical attraction (Zeta Potential)

Collision Efficiency

The graph illustrates particle transport as a function of size with changes in collision efficiency.

Tratnyek and Johnson, Nanotoday, 44-48, 2006

Collision Frequency vs Diameter

Similar work by Coulibaly (2006) with emulsified oils showed:

- Peak travel distance is at 1-2 μm droplets
- Transition from collision driven to "floating" rather than settling
- Distance is directly dependent on collision efficiency (α) and droplet size

Oil Droplets

Ionic Strength and Oil Retention

	SA17 B Zone		SA17 C Zone
	D.I.	CaCl ₂	CaCl ₂
Influent End	0.05%	0.76%	3.79%
Middle	0.18%	1.27%	4.94%
Effluent End	0.57%	1.96%	4.74%
Average	0.27%	1.33%	4.49%

Retained oil content in column tests with D.I. water and 200 mg/L CaCl₂.

Greater ionic strength in groundwater can impact oil retention. Consider measuring for:

Ca²⁺

 Mg^{2+}

Fe²⁺

Substrate Properties

Properties of "water-less" oil products (EOS 100)

- High vegetable oil content (~80 to 95% by wt.)
- Emulsifiers and other additives
- Once mixed with water have a large droplet diameter (~5-10 microns)

Mean Droplet 5-10 microns

Properties of traditional EVO products (EOS Pro)

- Low to medium vegetable oil content (45%-60% by wt.)
- Include nutrients or vitamins
- Droplets as delivered ~1 micron

Mean Droplet ~ 1 micron

Particle Size Distribution

EOS 100 Suspension

Column Studies: Oil Retention

- Column studies were conducted to compare:
 - Traditional vegetable oil emulsions (EOS Pro) to water mixable oils (EOS 100)
 - Measured the effective oil retention on two different types of soil:
 - Silty sand (field sand) K= 30 ft/day
 - Clean sand (washed masonry sand) K=
 100 ft/day

Column Studies: Oil Retention

Column Testing Process and Analysis

- Columns were packed with sand
- Developed by flushing with water until constant pressure drop
- Three pore volumes of diluted emulsion (1:10 EOS to water) were injected per column
- Columns were monitored for permeability loss (clogging)
- The columns were flushed with three pore volumes of chase water to remove un-retained emulsion
- Columns were sectioned and soil was analyzed for oil retention

Oil Retention Results

Project Cost Impact & Life Cycle

Results from the column studies were applied using the ESTCP Emulsified Oil Design Tool (ER-0626):

- Barrier Treatment Design
 - 200 ft wide
 - 10-40 ft bgs
 - 20 yr. life-cycle
 - 25% effective porosity
- Two Design Cases
 - Silty Sand: seepage velocity = 0.48 ft/day
 - V = (30 ft/day * 0.004 ft/ft)/0.25
 - Clean Sand: seepage velocity = 1.6 ft/day
 - V = (100 ft/day * 0.004 ft/ft)/0.25

http://www.serdp-estcp.org/Tools-and-Training/Environmental-Restoration/Groundwater-Plume-Treatment/Emulsion-Design-Tool-Kit

Life Cycle Cost Analysis

Clean Sand: seepage velocity = 1.6 ft/day

Comparison	EOS Pro	EOS 100
Contact Time (d)	> 60	> 60
Maximum Oil Retention (lb./lb.)	.001	.005
Reinjection Interval (yrs.)	1.5	5

Clean Sand Barriers:

- Overall lifecycle costs are higher than for silty sand
- Cost savings realized by using larger droplet size EOS 100

Life Cycle Cost Analysis

Silty Sand: seepage velocity = 0.48 ft/day

Comparison	EOS Pro	EOS 100
Contact Time (d)	> 60	> 60
Maximum Oil Retention (lb./lb.)	0.003	0.015
Reinjection Interval (yrs.)	5	10

Silty Sand Barriers:

- Overall lifecycle costs are lower than clean sand barriers
- Cost savings realized by using smaller droplet size EOS Pro

Conclusions

Size Matters

- 1-2 μm emulsified oil drops are optimum for transport in most aquifer settings (effective porosity 5-20%).
- Larger oil droplets provide increased retention
 - High Velocity Aquifers (> 0.5 ft/day)
 - Coarse Grained Matrices (effective porosity >20%)
 - Fractured Rock
 - Bio-Barriers
- Lifecycle costs are dependent on:
 - Site specific conditions (geology, groundwater velocity, etc.)
 - Substrate selection low vs high oil retention

Questions?

Brad Elkins, PG
belkins@eosremediation.com
www.eosremediation.com
919-873-2204 ext. 173

