TEXAS TECH UNIVERSITY

Iron-Laden Mineral Colloids as Naturally Abundant
Catalysts for Peroxide-Based In Situ Chemical Oxidation

Yue ‘Beatrice’ Li*1 Libor Machala? and Weile Yan?

Texas Tech University, Lubbock, TX, USA
2Palacky University in Olomouc, Olomouc, Czech Republic

May 22-25 2017

Fourth International Symposium on
Bioremediation and Sustainable
Environmental Technologies







In Situ Chemical Oxidation (ISCO)

o Remediating sites by injecting strong oxidizers directly into
the contaminated medium

o Target contaminants include organic substances and
gasoline-related compounds

o “In situ” = “in place”, signifying the remediation happens at
site of contamination.
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ISCO with Catalysts

o Common oxidants used in hydrocarbon sites: hydrogen peroxide (H,0,),
persulfate, and permanganate

o Many aquifer minerals may activate H,0,, generating reactive oxygen
species (ROS) such as hydroxyl radical (¢OH) or ferryl (>Fe'V) that are
capable of degrading contaminants.

o Minerals serve as heterogeneous Fenton catalysts:

* Iron Oxides (e.g., goethite, ferrihydrite)

* |ron-coated Mineral Colloids (e.g., Fe deposited on silica, alumina,
aluminosilicates, etc)

H,0, =Fe (lll) -O,H Haber and Weiss (1934)

o O O O

Intro Objectives Methods Results




lron-coated Mineral Colloids

In subsurface, aqueous Fe may immobilize onto natural mineral
colloids through multiple pathways, forming iron-laden mineral
colloids. This surface-residing Fe is known as Interfacial Iron
Species.
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Motivation of Study

o Many studies have focused on iron oxides as catalysts for
peroxide activation.

o Few research has assessed the activity of iron-laden mineral
colloids.

o Understanding the catalytic activity of these ubiquitous
mineral particles will allow:

e Quantification of oxidant dosage
* Prediction of contaminant degradation rates

* Possible engineering of site geochemistry for optimal remediation
outcome
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Obijectives

Characterize the of
interfacial Fe species on iron-laden mineral colloids.
Examine the of interfacial Fe for H,0,

activation and the oxidation of organic compounds.

Investigate the of
interfacial Fe during aging in aqueous media.

O O- O O

Intro Objectives Methods Results




Methodology



Agueous Experiments

Preparation of Fe-laden colloids Evaluation of catalytic activity
©)
nAlLO, Fe(ll) at pH 6 or %5 Benzoic acid (0.078 mM)
nSiO, ’ ‘\' Fe(Ill) at pH 3 weak acid with pK, =4.19;
(0.05- 0.8 mM) selectively react with «OH
500 mL
H,0, (0.011 mM
HoPE ;r//_ 20: | mM)
h | i
l Shake for 24 hours ‘ *tl =
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Surface and Solid Phase Characterization

o HR-TEM, BET, XRD

o UV-Vis Diffuse Reflectance Spectroscopy (DRS)

* measures reflectance of light (R..) by densely-packed
particulate material

\ZOB N\ Si())\é) e R, of pristine materials serves as the “blank”, so the
nm=svnm spectra reflect the feature of the iron immobilized on the
\%\3{/’ materials.
\Q W * R_ isrelated to Schuster-Kubelka—Munk (SKM) function
®e® (F(Roo)),

PRy = LRl Ky F(Ry) xK

2R, S
Varied little in Diff. species = diff. K

200-800 nm

Kortlim (2012); Torrent and Barrén (2002); Klier (1972)
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Results and Discussion



Properties of Mineral Colloids

2 Particle size info was provided by vendor and was verified qualitatively with TEM
characterization.

b |dentified with X-ray diffraction analysis.
¢ Particles immersed in 0.2 mM Fe(lll) for nSiO, and nAl,O, for 24 h.



I HR-TEM Images
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Uptake of Dissolved Fe by Mineral Colloids
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Data do not conform to Langmuir adsorption isotherm,
suggesting surface precipitation occurred in addition to

adsorption.
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Importance of Heterogeneous Reactions

a) BA +H,0,

o
00
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c) BA + H,0, + particles
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Activation of H,0, is mediated by Fe-laden mineral surfaces.
No significant H,O, decomposition in aqueous solution only.
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Catalytic Oxidation of Benzoate
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Dependence of Oxidation Rate on Surface Fe Loading
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o Oxidation rate increases with surface Fe density at low Fe loading.
o Above a critical Fe loading, surface activity approaches a plateau (or
increases marginally)
o Solids derived from Fe(ll) precursor have higher reactivity.
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Characterization of Fe speciation by DRS UV-Vis
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Perez-Ramirez, J, et. al (2005); Pirngruber, G. D., et.al (2006); Schwidder, M., et.al (2005); Kumar, M. S., et. al (2004)
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DRS UV-Vis of Fe-loaded n-SiO,
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o Isolated Fe predominates on surface when immersed in low conc. Fe(ll)
solutions. Higher Fe(ll) concentration gives rise to polymers and
precipitates.

o Fe precipitates appear on n-SiO, even when exposed to low Fe(lll)
concentration.
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DRS UV-Vis of Fe-loaded n-Al,O,
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o Precipitates form on n-Al,O; even when immersed in low conc. Fe(ll)
solution.

o Immersion in Fe(lll) solution gives rise to predominantly Fe dimers and
polymers. Surface precipitates emerge at higher surface Fe loading.
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Correlation Between Surface Activity and Fe
Molecular Structure

- 25
2 ® Fe-nAl203
S 20 - °
=1 T O Fe-nSiO2
o £

=
5315 | o

o
® £
N o
3 e O
o o .
SHO05 | O
g o
= @
2 00 - -

0 100 200 300

Peak Area of Isolated Fe®*(a.u.)

Deconvulting DRS spectra reveal the linear correlation between density of
isolated Fe and reactivity of iron-laden colloids.

References on this slide: Perez-Ramirez, J, et. al (2005); Pirngruber, G.
D., et.al (2006); Schwidder, M., et.al (2005); Kumar, M. S., et. al (2004)
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I Effect of Aging on Catalytic Activity

.16
[

g m 58d

2,12 »1d

[+ o~

T £

5 <

T 2 0.8

L

© o

S,

g < 0.

@

9

&

£ 0

=

< nSio2 nAl203

Impregnation time (days)

o Aging mineral colloids in the iron solution results in decrease in catalytic
activity for interfacial iron species.

o Restructuring of interfacial Fe may occur during aging period.
Characterization effort is on-going.
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Effect of pH on catalytic reactivity
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o Foriron-laden nSiO,, activity of solids decreases with increasing pH.
o Foriron-laden nAl,O,, optimal catalytic activity is attained at
circumneutral pHs.
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Conclusions

o Interfacial iron species on silica and alumina colloids have
considerable catalytic activity in activating H,0, .

o Interfacial iron derived from aqueous Fe(ll) has higher
activity than those from Fe(lll) ions.

o Surface activity is mainly contributed by well-dispersed
isolated Fe species than Fe clusters or precipitates.

o The freshly formed interfacial iron species are more active
than those aged in aqueous media.

o The effect of pH on reactivity of iron-laden minerals differs
with different substrates.
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