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In Situ Chemical Oxidation (ISCO) 

oRemediating sites by injecting strong oxidizers directly into 
the contaminated medium

o Target contaminants include organic substances and 
gasoline-related compounds

o “In situ” = “in place”, signifying the remediation happens at 
site of contamination.
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ISCO with Catalysts

o Common oxidants used in hydrocarbon sites: hydrogen peroxide (H2O2), 
persulfate, and permanganate 

o Many aquifer minerals may activate H2O2, generating reactive oxygen 
species (ROS) such as hydroxyl radical (•OH) or ferryl (>FeIV) that are 
capable of degrading contaminants. 

o Minerals serve as heterogeneous Fenton catalysts: 

• Iron Oxides (e.g., goethite, ferrihydrite)

• Iron-coated Mineral Colloids  (e.g., Fe deposited on silica, alumina, 
aluminosilicates, etc) 

Haber and Weiss (1934)
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Iron-coated Mineral Colloids



In subsurface, aqueous Fe may immobilize onto natural mineral 
colloids through multiple pathways, forming iron-laden mineral 
colloids. This surface-residing Fe is known as Interfacial Iron 
Species. 

Iron-coated Mineral Colloids
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Motivation of Study

oMany studies have focused on iron oxides as catalysts for 
peroxide activation.

o Few research has assessed the activity of iron-laden mineral 
colloids.

oUnderstanding the catalytic activity of these ubiquitous 
mineral particles will allow:
• Quantification of oxidant dosage 

• Prediction of contaminant degradation rates

• Possible engineering of site geochemistry for optimal remediation 
outcome
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Objectives

1. Characterize the physical and chemical properties of 
interfacial Fe species on iron-laden mineral colloids.

2. Examine the catalytic activity of interfacial Fe for H2O2
activation and the oxidation of organic compounds.

3. Investigate the changes in structure and reactivity of 
interfacial Fe during aging in aqueous media. 
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Methodology



Aqueous Experiments
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Surface and Solid Phase Characterization

o HR-TEM, BET, XRD 

o UV-Vis Diffuse Reflectance Spectroscopy (DRS) 

• measures reflectance of light (R∞) by densely-packed 
particulate material

• R∞ of pristine materials serves as the “blank”, so the 
spectra reflect the feature of the iron immobilized on the 
materials.

• R∞ is related to Schuster-Kubelka−Munk (SKM) function 
(F(R∞)), 
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F(R∞) =
1 − R∞

2

2R∞
=
K

S

Varied little in 
200-800 nm

F R∞ ∝ K

Diff. species → diff. K

Kortüm (2012); Torrent and Barrón (2002); Klier (1972)
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Results and Discussion



Properties of Mineral Colloids 

Ave. Primary 
Particle 

Diametera

Crystallographic 
phaseb

BET surface area, m2/g 

Pristine Fe-impregnatedc

nSiO2 12 nm amorphous
201 +/-

0.1
190 +/- 0.3

nAl2O3 13 nm ε-Al2O3, δ-Al2O3

99 +/-
0.6

102 +/- 0.1 

a Particle size info was provided by vendor and was verified qualitatively with TEM 
characterization. 
b Identified with X-ray diffraction analysis. 
c Particles immersed in 0.2 mM Fe(III) for nSiO2 and nAl2O3 for 24 h.  



HR-TEM Images
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Uptake of Dissolved Fe by Mineral Colloids

Impreg. in Fe(II) solution
at pH = 6

Data do not conform to Langmuir adsorption isotherm, 
suggesting surface precipitation occurred in addition to 
adsorption.
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Impreg. in Fe(III) solution
at pH = 3



Importance of Heterogeneous Reactions
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Activation of H2O2 is mediated by Fe-laden mineral surfaces. 
No significant H2O2  decomposition in aqueous solution only. 



Catalytic Oxidation of Benzoate
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Fe(II) Fe(III)

o Oxidation rate increases with surface Fe density at low Fe loading.  
o Above a critical Fe loading, surface activity approaches a plateau (or 

increases marginally) 
o Solids derived from Fe(II) precursor have higher reactivity. 
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Characterization of Fe speciation by DRS UV-Vis

(a)

(c)

(b)

(d)

225 & 265 nm : 

O  Fe3+ in octahedral 
coordination

300 nm: dimer 

350 nm - 480 nm:polymer

>480 nm: Fe(III) hydroxide 
nanoparticles

Perez-Ramirez, J, et. al (2005); Pirngruber, G. D., et.al (2006); Schwidder, M., et.al (2005); Kumar, M. S., et. al (2004) 
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DRS UV-Vis of Fe-loaded n-SiO2

(a)

(c)

(b)

(d)o Isolated Fe predominates on surface when immersed in low conc. Fe(II) 
solutions. Higher Fe(II) concentration gives rise to polymers and 
precipitates.

o Fe precipitates appear on n-SiO2 even when exposed to low Fe(III) 
concentration.
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DRS UV-Vis of Fe-loaded n-Al2O3

(a)

(c)

(b)

(d)

o Precipitates form on n-Al2O3 even when immersed in low conc. Fe(II) 
solution. 

o Immersion in Fe(III) solution gives rise to predominantly Fe dimers and 
polymers.  Surface precipitates emerge at higher surface Fe loading.  
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Correlation Between Surface Activity and Fe 
Molecular Structure 

References on this slide: Perez-Ramirez, J, et. al (2005); Pirngruber, G. 
D., et.al (2006); Schwidder, M., et.al (2005); Kumar, M. S., et. al (2004) 

Intro Objectives Methods Results

Deconvulting DRS spectra reveal the linear correlation between density of 
isolated Fe and reactivity of iron-laden colloids. 



Effect of Aging on Catalytic Activity

o Aging mineral colloids in the iron solution results in decrease in catalytic 
activity for interfacial iron species. 

o Restructuring of interfacial Fe may occur during aging period. 
Characterization effort is on-going. 
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Effect of pH on catalytic reactivity
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o For iron-laden nSiO2,  activity of solids decreases with increasing pH.
o For iron-laden nAl2O3, optimal catalytic activity is attained at 

circumneutral pHs.
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Conclusions

o Interfacial iron species on silica and alumina colloids have 
considerable catalytic activity in activating H2O2 .

o Interfacial iron derived from aqueous Fe(II) has higher 
activity than those from Fe(III) ions.  

o Surface activity is mainly contributed by well-dispersed 
isolated Fe species than Fe clusters or precipitates. 

o The freshly formed interfacial iron species are more active 
than those aged in aqueous media.    

o The effect of pH on reactivity of iron-laden minerals differs 
with different substrates.



Practical Implications

oPeroxide-based ISCO applications may be enhanced by: 

• engineering site geochemistry for formation of surfaces 
with active interfacial Fe species

• introduction of reactive colloids as catalysts into source 
zones or hot-spots for increased degradation efficiency 
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