

Wind powered constructed wetland for PCE dechlorination

Miami, Battelle bioremediation symposium 2017

By Jasperien de Weert, Johan van Leeuwen, Bas van der Zaan, Jan Gerritse and Nanne Hoekstra

25th of May 2017

<u>Outline</u>

- Historical contamination
- Clean up efforts
- Design: Ecological engineered wind powered wetland concept Field test & data
- Conclusions
- Recommendations & future work

Site history

Birdsview of railyard

Former welding workshop from Dutch rail

Clean up effort(s)

Soil excavation in 2007

Deepwells & pump volumes

ONTGRAVINGSVAK

Deltares

Excavation → PAT → constructed wetland

- After contaminated soil excavation, contaminated soil remained underneath the dugout pit
- After 6 months of pump and treat influent concentrations dropped below cost effective contaminant removal
- After 2 years of PAT decided to stop and design and construct a more extensive green remediation concept

Design ecological engineered concept

Final design

Sampling locations

Construction wetland

Building wetland with scoria & strav

Helofytes planted 10 pcs/m²

Deltares

Field test

Flow conditions test

Tracer test at different positions

Fluorescein concentrations

Bromide concentrations

Flow conditions test

Tracer test at different positions

Bromide concentrations

Deltares

HRT based on flow rate = 4 weeks Tracers break though in 14 days \rightarrow preferential flow paths

Wind in relation to water flow

- Influent ranged from 52 to 1198 L/hr. (1.2 28.7 m3/day)
- Influent Average = 125 L/hr. (over a period of 19 days)
- Flow and residence time are directly coupled to local wind speed over time → important to know local weather circumstances

DOC at start and after 14 months

DOC is higher than at start or in influent reflecting DOC release from helophytes and slow release compound (straw)

Relative degradation for PCE

 Relative amount of PCE and intermediates. Percentages are relative to sum of the PCE, TCE, cis-DCE, VC, ethene & ethane

Relative degradation for PCE

<u>Costs</u>

- Design of wind powered wetland: €15.000,-
- Construction of wetland €35.000,-
- Monitoring & research: €37.500,-
- Maintenance cost: €2.500,-
- Conventional monitoring: €10.000,-

Conclusions

- Full PCE dechlorination in wind powered constructed wetland
- Ecological designed concept is self-sustaining
- Seasonal variation in wind and temperature effect the system, but remains sufficient
- Added straw as slow release compound provided sufficient dissolved organic carbon
- Tailoring the design to local weather and subsurface conditions is important (*micro organisms; DOC, nitrate/sulphate, wind, temperature, contaminant concentrations; etc*)

Recommendations & future work

- Optimizing flow paths within the wetland, to decrease its footprint
- Explore possibilities to evolve the concept for application with other contaminants
- Optimization of the dimensions of the system for local wind conditions
- Applying different possible carbon release compounds in addition to straw such as wood chips, saw dust or compost
- Re-inject effluent water within the contaminated zone to stimulate in-situ degradation

Deltares

Deltares

