Biogeochemical Conversion of Calcium Sulfite into Gypsum in Flue Gas Desulfurization Waste

Presenter: Linxi Chen, PhD

Co-authors: Duane Graves, PhD; Jacques Smith, PhD; Robby White; Brianna Wallace, PE; Sarah Herr

Geosyntec Consultants

Background

- Coal combustion generates sulfur dioxide (SO₂) in flue gas
- Flue gas desulfurization (FGD) scrubbers most commonly remove SO₂ by reacting flue gas with a lime or limestone slurry
- With excess oxygen, SO₂ forms gypsum (CaSO₄·2H₂O), under inhibited (oxygen starved)
 condition hannebachite (CaSO₃ ·0.5H₂O) forms

Picture source: https://en.wikipedia.org/wiki/Fluegas_desulfurization#/media/File:Flue_gas_desulfurization_unit_EN.svg

Problem Statement

- High purity (>80%) FGD gypsum has commercial value comparable to mined gypsum
- Hannebachite is difficult to dewater, has no commercial value
- A coal-fired power plant in SE US produced 3 million tons of low purity gypsum containing 30 to 50% gypsum with the balance being hannebachite (40 to 60%) and limestone (<10%)

Problem Statement

- The power plant needed to recover for other uses of the 80 acres of FGD waste
- Wanted to avoid landfilling the byproduct
- Sought a means to convert the low purity gypsum into a commercially valuable product

Our Process Concept

- Evaluated available gypsum enrichment technologies and economics
 - Acidify and allow sulfite to auto-oxidize
 - Chemically oxidize with strong oxidant
 - Effective but expensive with safety concerns
- Identified new alternative to replace dangerous and costly available technologies
- Adapted sulfur oxidizing bacteria to convert sulfite to sulfate

Biogeochemical Approach

- Natural sulfur cycle
- Sulfur oxidizing bacteria (SOB) are important in the mineralization process
- SOB were isolated from an aged FGD byproduct and cultured

Assimilation

SOB at 1000x magnification

Decomposition

H₂S

Fungi

Bacteria

Organic Sulfur

Optimized Reactor Design

Stirred slurry reactor

CO₂ free slurry reactor

Analytical Methods

- Stepwise Thermogravimetric Analysis (TGA)
 - Measures sulfite/sulfate conversion
 - Faster and more reliable than wet-chemistry methods CaSO₄·2H₂O → CaSO₄ + 2H₂O (160 to 200°C) (CaSO₃·CaSO₄)·1/2H₂O → CaSO₃·CaSO₄ + 1/2H₂O (400 to 430°C)
- Off-gas Carbonate Analysis
 - > Measures $CaCO_3$ by off-gassing as CO_2

Performance Data

engineers | scientists | innovators

.

Performance Highlight

	Wallboard Parameters		Treated FGD
	Minimum	Maximum	
Gypsum	>92%		96%
Hannebachite		1%	2%
рН	6	8	7
Particle size	20 µm	60 µm	52 µm
Chloride		120 ppm	< 68 ppm
Acid insoluble matter		3.5%	< 1%

Performance Summary

- SOB biomass directly related to conversion rate
- > 1 x 10⁷ cells/mL yields > 1% conversion/day
- Max. conversion rate ~ 5% /day
- Per batch treatment time, ~ 10 days
- Produced commercially desirable gypsum crystals (> 20 microns)
- Required attention to reactor design, mixing methods, and particle classification

Particle Size

Crystal Growth Experiments Starting with Only < 20 µ FGD Solids

Classifier

- Recovery of commercially valuable gypsum crystals by size in a classifier
- Particle size gradient was observed

3rd compartment Smaller crystals to recycle

Solar De la constante

System Performance and Mass Balance

Value Added to the Client

VALUE	
\$40/ton avoided	
\$10/ton	
\$20/ton	
\$50/ton	

Conclusions

- Novel application of SOB for the industrial conversion of low-grade FGD byproduct into viable commercial products, namely, gypsum for drywall, cement admixture, and agriculture
- Safe process operates at ambient temperature with no input of hazardous reagents
- Relative simplicity of unit operations allows flexibility in design and use readily available process equipment

Scale of operation limited by containment, mixing, and aeration equipment

References

- D. Graves, J.J. Smith, L. Chen, A. Kreinberg, B. Wallace and R. White, (2017) Biogeochemical Oxidation of Calcium Sulfite Hemihydrate to Gypsum in Flue Gas Desulfurization Byproduct using Sulfur-oxidizing Bacteria. *Journal of Environmental Management.* (accepted)
- D. Graves, A. Kreinberg, R. White, B. Wallace, B. Adair, L. Chen, S. M. Herr. Biogeochemical Transformations of Flue Gas Desulfurization Waste using Sulfur Oxidizing Bacteria. U.S. Patent. Application No. 15/324,320. Filed Jul 7, 2015.

Linxi Chen • LChen@geosyntec.com • 865-330-0037