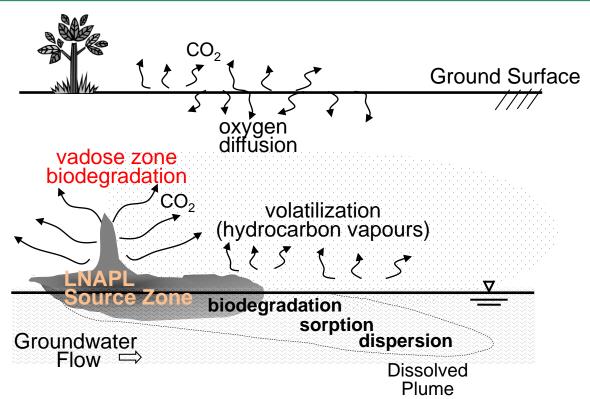
Use of MIN3P-Dusty Numerical Model to Simulate Rates of LNAPL Depletion for Natural and Bioventing Conditions

Fourth International Symposium on Bioremediation and Sustainable Environmental Technologies, Miami, Florida May 22-25, 2017

Parisa Jourabchi, Ian Hers, Golder Associates Andrew Kirkman, BP Remediation Management Ulrich Mayer, University of British Columbia John Wilson, Scissortail Environmental Solutions, LLC



Background & Objectives

 Natural source zone depletion (NSZD) is a significant process for LNAPL mass depletion and compositional change at many petroleum hydrocarbon impacted sites.

Key questions:

- How much does oxygen delivery from bioventing accelerate LNAPL mass depletion and compositional change during early stages of the remediation process?
- How can bioventing system design be optimized?
 (longer-term goal)

Key objective: to develop an improved mechanistic or processbased understanding of LNAPL depletion using the MIN3P-Dusty numerical model under natural and bioventing conditions

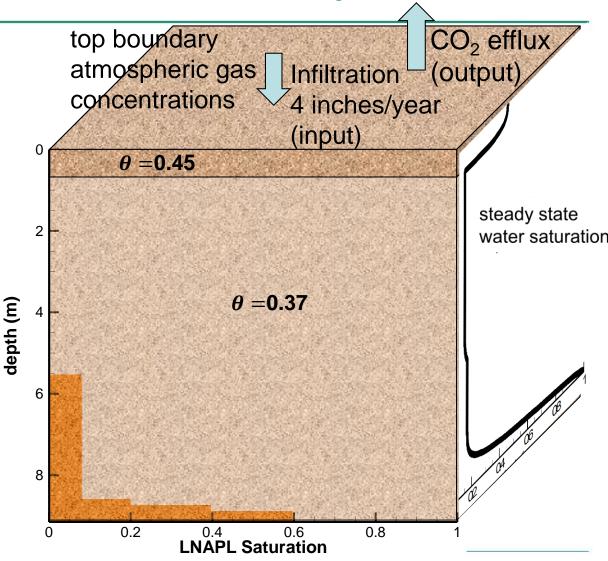
Reactive Transport Model – MIN3P-Dusty

- Finite-volume, multi-component, reaction & transport
- Variably saturated porous media
- MIN3P¹ developed by Dr. Ulrich Mayer (UBC)
- + multi-species gas diffusion and gas advection
 - = MIN3P-Dusty² by Dr. Sergi Molins

¹Mayer, K. U., Frind, E. O. & Blowes, D. W. 2002. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resources Research, 38.

²Molins, S., and K.U. Mayer. 2007. Coupling between Geochemical Reactions and Multicomponent Gas and Solute Transport in Unsaturated Media: A Reactive Transport Modeling Study. Water Resources Research, 43.

Golder



Process-Based Reactive Transport Model

- Transport
 - Water infiltration from precipitation
 - Soil gas diffusion (dusty gas model)
 - Soil gas advection
- Reactions

June 11, 2017

- Biodegradation reactions
- Acid/base equilibria
- Sorption
- Variably Saturated Flow
 - Constant infiltration at ground surface
 - Constant head lower boundary

Conceptual Model Setup

- Porosity
- Permeability
- Hydraulic function parameters
- Fraction organic carbon

Soil Properties (two layers)

- Benzene
- Heptane
- 2-methylnaphthalene
- Tetradecane
- Pristane

LNAPL Constituents

LNAPL Saturation Profile

Biodegradation Reactions

- Baseline soil respiration
- Aerobic biodegradation reactions
- Anaerobic/methanogenic biodegradation reactions

Dissolution and volatilization

Raoult's law

Hydrocarbon Source Composition

LNAPL Fraction	Component	Molecular Weight (g)	Mole Fraction*
Aromatics	benzene (C ₆ H ₆)	78.11	0.100
Light alkanes	heptane (C ₇ H ₁₆)		0.157
PAHs	2-methylnaphthalene (C ₁₁ H ₁₀)	142.20	0.209
Heavy alkanes	tetradecane (C ₁₄ H ₃₀)	198.40	0.175
Isoprenoids	pristane (C ₁₉ H ₄₀)	268.53	0.311
	0.952		

^{*} Based on the average of relative peak areas of GC/FID data of eight representative LNAPL (weathered) samples

Golder

1D Simulation – Background CO₂ Efflux

- Chemical Components: natural organic carbon, CO₂, O₂, N₂, Ar
- Kinetic reaction: aerobic degradation of organic carbon
- Assuming natural soil respiration limited to the top 2 m
- Background respiration rate, R, due to natural organic carbon content of the soil assumed proportional to fraction organic carbon, F_{oc} :

$$R = k_{oc} F_{oc}$$

where, k_{oc} is the rate constant (mol/L_(aq)/s)

■ Biodegradation reaction assuming a 1:1 molar ratio for oxygen consumption and CO₂ production

Degradation Rate Constant, k_{oc} (mol/L/s)	Background CO ₂ Efflux
<u>3.35E-5</u>	5 µmol/m²/s

 k_{oc} calibrated to match background CO₂ efflux

Aerobic Biodegradation Reactions

• Overall aerobic biodegradation reaction for hydrocarbon component with chemical formula C_aH_b :

$$C_a H_b + (a + b/4) O_2 + (a - b/2) H_2 O \rightarrow a C O_3^{2-} + 2 a H^+$$

Kinetic rate formulation that consists of dual Monod terms with respect to substrate and oxygen:

$$R_{aerobic} = \nu_{max} \frac{C_{HC}}{C_{HC} + K_{HC}} \frac{C_{O2}}{C_{O2} + K_{O2}}$$

In addition, pristane degradation is assumed to be inhibited by alkanes through non-competitive inhibition terms:

$$R_{aerobic}(pristane) = \nu_{max} \frac{C_{HC}}{C_{HC} + K_{HC}} \frac{C_{O2}}{C_{O2} + K_{O2}} \frac{K_{i_1}}{C_{HC} + K_{i_1}} \frac{K_{i_2}}{C_{HC} + K_{i_2}}$$

■ Half-saturation constant of each hydrocarbon component K_{HC} is related to the respective initial effective solubility (S_e) divided by a factor ψ

Key objective: relating the half-saturation constant to the effective solubility of a constituent to represent <u>first-order rates in the vadose zone away from the source</u>, and <u>zero-order rates close to the source zone</u>.

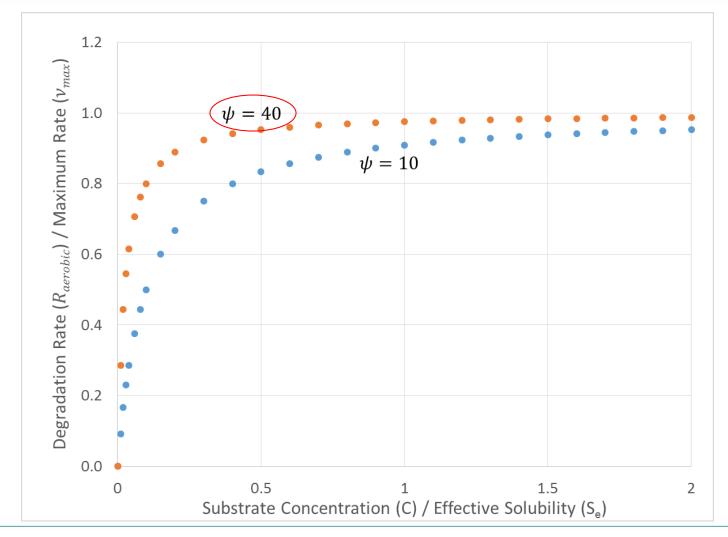
Aerobic Biodegradation Reactions - Parameters

Component	First-Order Rate Constants (per hour)	Source / Rationale
benzene	0.3	ITRC PVI Guidance (2014)
heptane	36	Geometric mean values of hexane and octane from ITRC PVI Guidance (2014)
2-methylnaphthalene	0.25	Two-thirds of the value for naphthalene from ITRC PVI Guidance (2014) based on the relative difference of BioHCwin half-life values
tetradecane	12	One-third of the rate constant for heptane based on the relative difference of BioHCwin half-life values
pristane	0.03	One-tenth of the rate constant for benzene based on the relative difference of BioHCwin half-life values

- Maximum rates estimated from first-order rate constants and half-saturation constants.
- O₂ half-saturation constant 0.25% in gas phase for all hydrocarbon biodegradation reactions.

June 11, 2017

Effective Solubilities & Half-Saturation Constants – Data from Past Studies


	Maximum Porewater Total Hydrocarbon Concentration [,] S _e (mg/L)	Model Calibrated Parameters		
Reference* / Location		$ u_{max} $ in Aqueous Phase (mg/L/hour)	$k^1 = rac{ u_{max}}{K_{HC}}$ (1/hour)	$\Psi = k^1 \frac{S_e}{v_{max}}$
Moyer et al. (1996) / 50CL	4.84	2.61E-02	4.00E-01	74
Ostendorf and Kampbell (1991) / PT4	4.62	7.55E-03	4.47E-02	27
Ostendorf and Kampbell (1991) / DG109	4.62	7.81E-03	3.72E-02	22
Ostendorf and Kampbell (1991) / DG280	8.57	9.84E-03	4.76E-02	41
Ostendorf and Kampbell (1991) / M30	8.18	4.84E-03	3.60E-02	61

^{*}All studies conducted at a weathered aviation gasoline release site

Effective Solubilities & Half-Saturation Constants

Methane Oxidation – Kinetic Rate Formulation

$$CH_4 + 2O_2 \rightarrow CO_3^{2-} + 2H^+ + H_2O$$

Dual Monod Formulation

$$R_m = V_{max} \frac{[CH_4]}{[CH_4] + K_{m_CH4}} \frac{[O_2]}{[O_2] + K_{m_O2}}$$

 V_{max} = maximum methane oxidation rate (8 x 10⁻⁸ mol (CH₄)/L_(aq)/s) K_{m_CH4} = methane half saturation constant (1 x 10⁻⁵ mol/L_(aq)) K_{m_O2} = oxygen half saturation constant (1 x 10⁻⁵ mol/L_(aq))

Represent the geometric means of the Monod parameters from five studies (details in Jourabchi et al., Battelle 2013)

Anaerobic Biodegradation Reactions

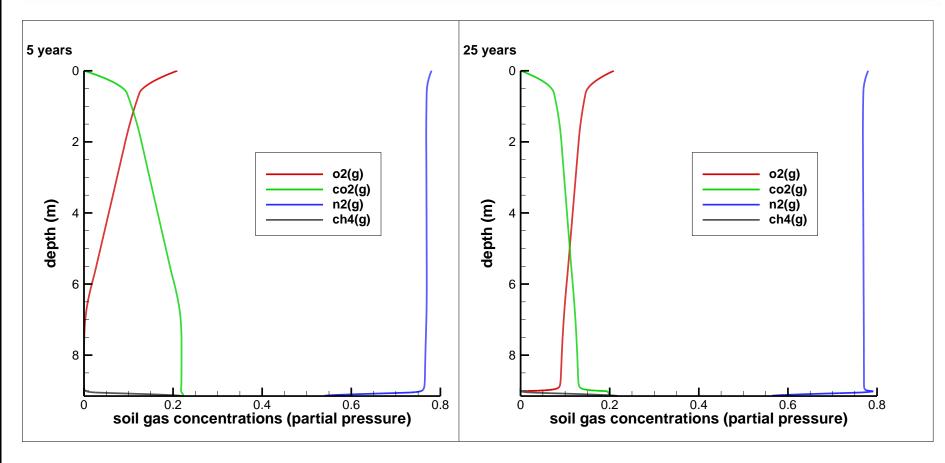
- Under methanogenic conditions, where oxygen concentrations are depleted
- Overall degradation pathways:

$$C_a H_b + \frac{3(4a-b)}{8} H_2 O \rightarrow \frac{(4a-b)}{8} C O_3^{2-} + \frac{2(4a-b)}{8} H^+ + \frac{(4a+b)}{8}) C H_4,$$

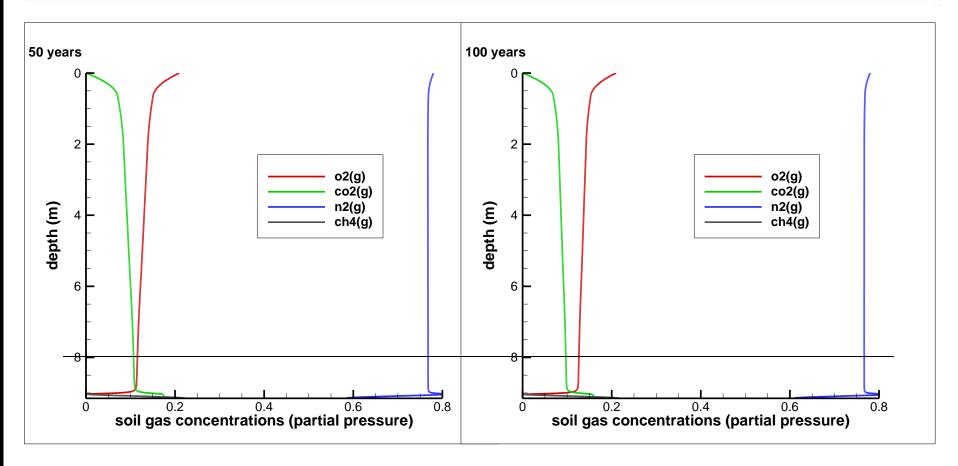
Rate formulation is assumed to follow a Monod expression with respect to the substrate (except for 2-methylnaphthalene) and a non-competitive O₂ inhibition term as follows:

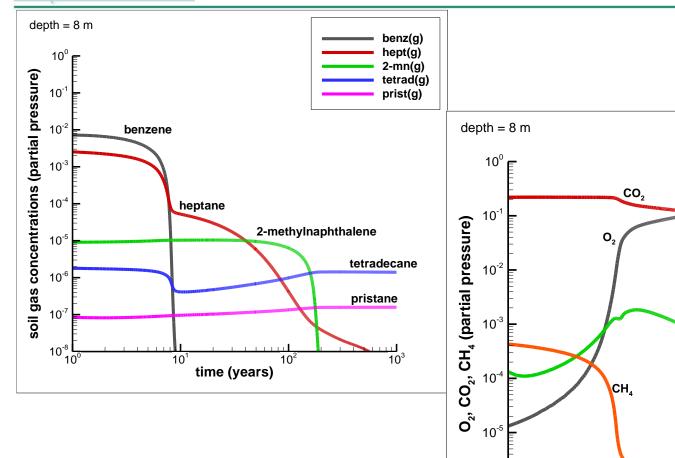
$$R_{anaerobic} = k_{max} \frac{C}{C + K_{an}} \frac{K_{i_02}}{[O_2] + K_{i_02}}$$

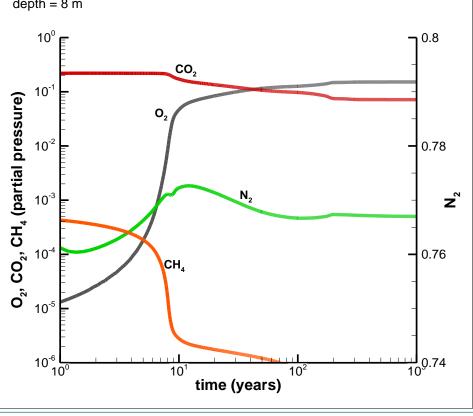
■ O_2 inhibition constant K_{i_o2} is assumed to be 31 µmol/L for all components (Mayer et al., 2002) for the anaerobic biodegradation reactions.

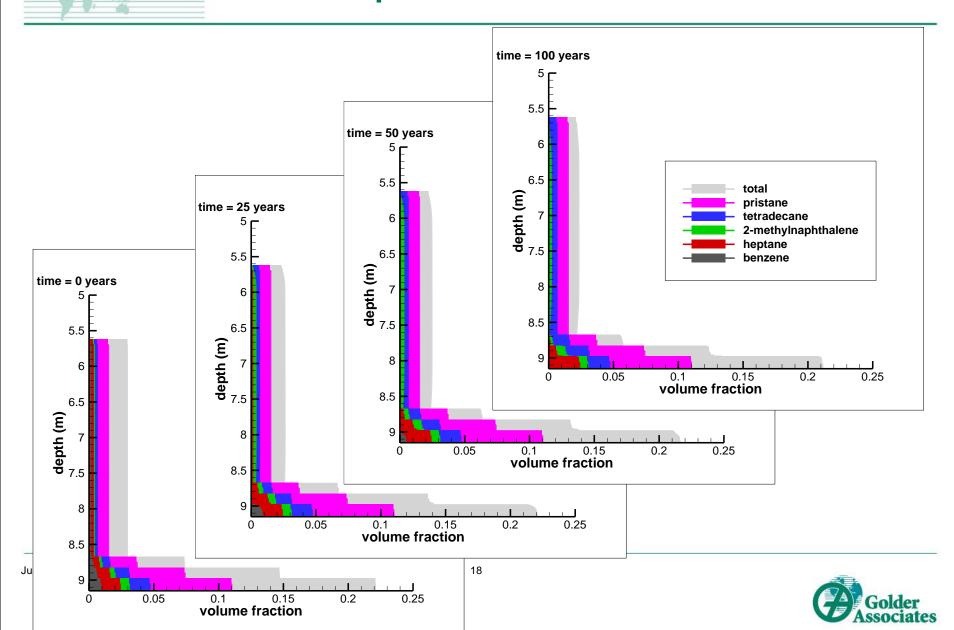

Anaerobic Biodegradation Reactions - Parameters

Component	Rate Formulation	Half Saturation Constant (mol/L)	Zeroth Order or Maximum Rate (mol/L-s)	First- Order Rate Constant*	Source
benzene	$\begin{array}{c} Monod + O_2 \\ inhibition \end{array}$	1.0E-04	2.5E-12	2.5E-08	Mayer et al. (2002) for toluene
heptane	Monod + O_2 inhibition	2.5E-03	7.8E-10	3.1E-07	Siddique et al. 2008; C7 alkane as surrogate
2-methyl- naphthalene	First-order + O_2 inhibition	-	-	2.3E-07	Chang et al. (2002)
tetradecane	Monod + O_2 inhibition	1.9E-03	6.8E-10	3.6E-07	Siddique et al. 2008; C10 alkane as surrogate
pristane	No degradion under methanogenic conditions	-	-	-	Townsend et al. 2003

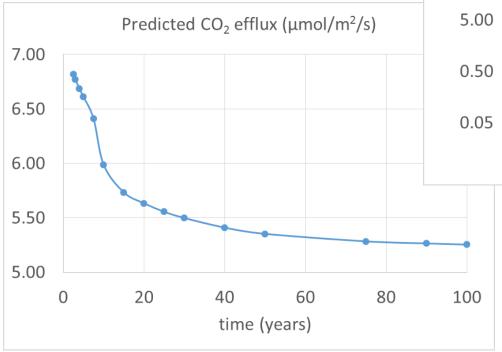

Predicted Soil Gas Concentration Profiles

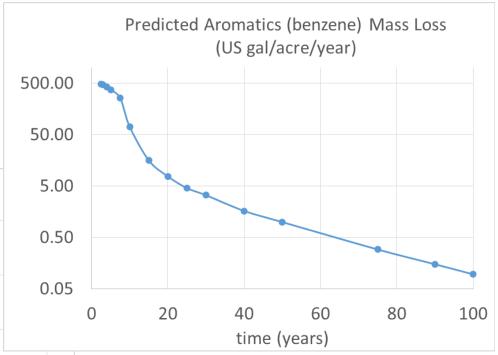



Predicted Soil Gas Concentration Profiles

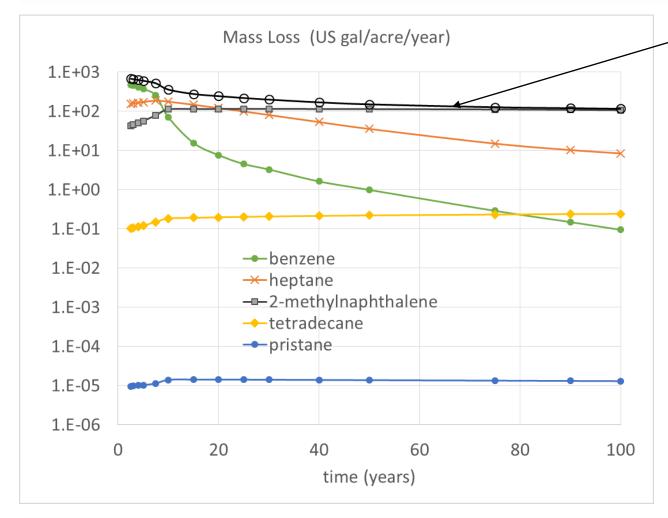


June 11, 2017


Natural Depletion – LNAPL Evolution



Predicted Depletion Rates

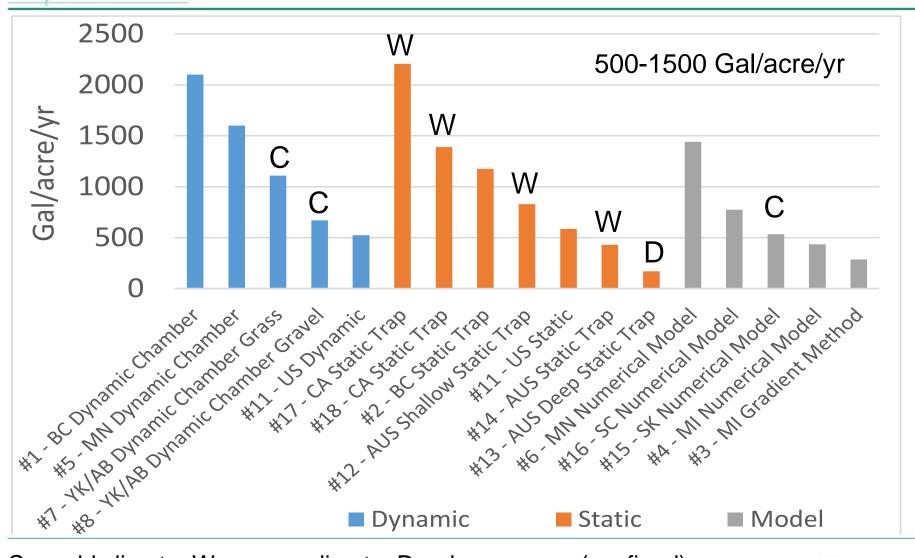

benzene

June 11, 2017

TPH Depletion Rate

total

Rate decreasing from 700 to 120 gal/acre/year


Are rates for pristane & tetradecane underestimated?

- Direct outgassing (Ng et al., 2015)
- Biosurfactant effects (Hua and Wang, 2014)

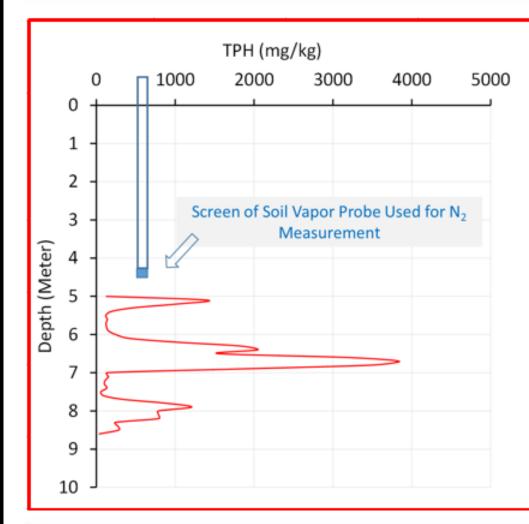
Golder

20

Vadose Zone Biodegradation Loss Rates

C = cold climate, W = warm climate, D = deep source (confined) Hers et al. (Battelle 2016)

Comparison to Screening Model


- Vadose Zone Biodegradation Loss (VZBL) Model
- Predict mass loss rates and depletion times based on readily available data: TPH concentration profile in soil, water table, and soil properties
- Simplified method for aerobic and anaerobic degradation rate estimates
- Model features:
 - Variable water table
 - Multi-layered soil
 - Optional baseline O₂ respiration

(Wilson et al., Battelle 2016)

VZBL Calculations & Assumptions

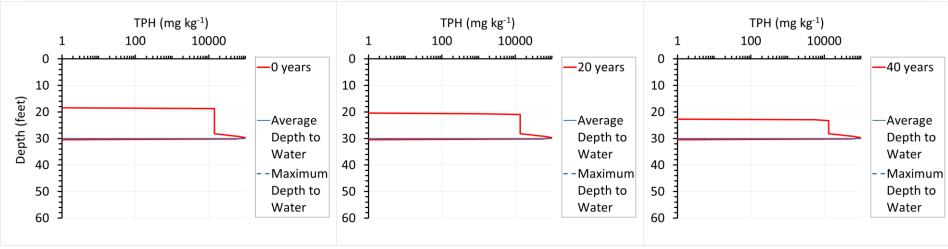
Calculation Procedure for Anaerobic Biodegradation

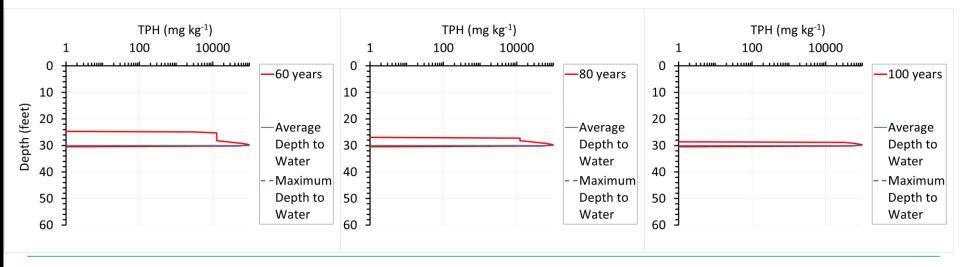
The anaerobic biodegradation rate is calculated from the methane flux in soil gas, which in turn is estimated from the concentration of N_2 in soil gas at any convenient depth interval that is above and close to the TPH. The rate of anaerobic biodegradation is assumed to be uniform and constant across the depth interval contaminated with TPH.

Calculation Procedure for Aerobic Biodegradation

The flux of oxygen available for biodegradation is calculated from the depth to the most shallow interval in the profile with TPH. The oxygen demand of the flux of methane is subtracted from the flux of oxygen. If any oxygen remains, then a corresponding amount of TPH is removed from the most shallow layer with TPH.

Golder


MIN3P-Dusty & VZBL


- Equivalent Input Parameters
 - Porosity and moisture content
 - Total petroleum hydrocarbon concentrations in soil
 - Baseline soil respiration
 - N₂ concentrations in soil gas
 - LNAPL properties & stoichiometric molar ratio of O₂:HC; CH₄:HC
- Predicted hydrocarbon mass loss rates
 - VZBL mass loss rates approximately greater by a factor of two
 - Ranges from 1,400 gal/acre/year (initial) to 790 gal/acre/year (100 years)
 - Mass is predicted to remain beyond 100 years

VZBL Predicted TPH Profiles in Soil

Golder Associates

Summary & Work in Progress

- Process-based and mechanistic model (MIN3P-Dusty) used for improved understanding of NSZD processes
- NSZD rates for hydrocarbon components initially at 700 gal/acre/year and depletion times greater than 10 years, depending on component and depth
- Predicted rates within range of vadose zone NSZD rates determined from other modelling studies and CO₂ efflux measurements
- Data gap remains: evaluation of biodegradation process for the heavier and less soluble hydrocarbon components
- VZBL screening model based on simplified processes yet estimated depletion rates within approximately a factor of two
- Three-dimensional bioventing simulations that incorporate addition of air at specified rate and depth interval – in-progress!

Golder