

#### FIELD TRIALS OF PERIODIC-SINUSOIDAL SLUG TESTS FOR AQUIFER PROPERTIES AND LNAPL TRANSMISSIVITY

Don A. Lundy, PhD, PG – GES, Tucson, AZ David Demko, PG and Greg Rosenzweig, PG – GES, Exton, PA

2017 Battelle Bioremediation Symposium – May 24, 2017



## Sinusoidal Aquifer Tests Are Not New

#### Tidal fluctuations

- > Shoreline is line source
- > Wave amplitude and lag time used to estimate hydraulic diffusivity (T/S) (Ferris, 1951)
- Sinusoidal pumping
  - Pumping and injecting water at sinusoidal rates
  - > Analytical soln. to estimate aquifer parameters (T & S) Rasmussen, Haborak, and Young (2003)



# Technology Development and Benefits

- Development Steps
  - > Funding
  - > Design and construction
  - > Field trial testing/analysis
  - > Validation of results
    - Groundwater pumping tests
    - LNAPL transmissivity tests
- Benefits: Less Time & Money
  - > No water storage/treatment
  - > No discharge permitting
  - > Shorter test duration
  - > Two fluid parameters, one test







#### First Trial Test in Glacial Aquifer USGS Crude Oil Release Research Site, Bemidji, MN

North Pool Oil Body and Site Features





#### Field Test Equipment Set-up





## Slug Movement to Pumping/Injection Rates

- Arm rotation moves slug
- Insertion = Injection
- Withdrawal = Pumping
- Constant angular velocity
- Equal θ change per time step
- Wire cable length change is sinusoidal
- Q rates based on slug length change with time





# Calculating Pumping/Injection Rates

- Model slug movement
- Calculate changes in leader wire length
- Known: slug length and diameter
- Changes in cylindrical volume/time = Q-rates







## Transducer Responses – First Trial Test



## Data Analysis of Filtered Aquifer Response



-GES

## Comparison to a USGS 45-hr Pumping Test

- Sinusoidal Slugger
  - > Average trans. =  $14,810 \text{ ft}^2/\text{d}$
  - > Average storativity = 1.56E-03
- Conventional Pumping
  - > Average trans. =  $13,425 \text{ ft}^2/\text{d}$
  - > Average storativity = 1.84E-03
- Results
  - > Average trans. within ~10%
  - > Average storage within ~16%
- Valid for estimating aquifer properties





## 2cd Trial – Karstic Limestone Aquifer with LNAPL

Outcrop with Fractures



Core with Dissolution Features





## Aquifer Test Analysis in Tidal Environment

- Separate signal from noise, the tidal trend
  - Subtract moving average heads from total heads to get the residual heads
  - > A B = C below, where
    - A = Total transducer head
      B = Moving average head
      (trend)



- Separation at a slugger test control well
- Trend has LNAPL response?







## Aquifer Response Analysis

- Select three consecutive slugger sine waves.
- The *least influenced* by background noise.

- Analysis with software
- Transmissivity agrees with published values





# Refine LNAPL Response and Analyze For $T_{\text{LNAPL}}$

- Filter the previous LNAPL response trend(s)
  - Calculate moving average of previous trend and subtract it from that trend
  - > Repeat this as needed
- After four filtering steps:

- Adjust the calculated sinusoidal pumping rates
  - > Analyze with AQTESOLV or equivalent
  - Repeat until calculated and observed responses agree

Response at MW-156





## Testing the LNAPL Hypothesis with Other Results

- Sinusoidal test at MW-156
  - >  $T_{aquifer} = 3.4 \times 10^4 \text{ ft}^2/\text{day}$
  - $> T_{LNAPL} = 65 \text{ ft}^2/\text{day}$
- Baildown test results at nearest MW (8 ft away)
   T = 10 ft<sup>2</sup>/day
  - $> T_{LNAPL} = 10 \text{ ft}^2/\text{day}$
- Range of five baildown tests
  T<sub>LNAPL</sub> = 10 to 440 ft<sup>2</sup>/day
- Caveat: Unconfined T<sub>LNAPL</sub>
  vary with tide fluctuations.

- The scale effect of transmissivity is well supported onsite by
  - > Slug tests
  - > Pumping tests
  - > Large-scale tidal response tests.
- Sinusoidal tests are expected to provide larger transmissivities than slug/baildown tests.



# Conclusions Regarding Trial Sinusoidal Tests

- Provide aquifer transmissivities comparable to conventional pumping tests reported by others at two sites.
- The aquifer sine wave signals can be filtered from background tidal noise for analysis with commercial software.
- When LNAPL is present, multiple filtering steps on residuals can produce low amplitude sine waves timed with the water table sine waves.
- When analyzed with best-fit LNAPL pumping/injecting rates, these provide LNAPL transmissivities in the range of baildown tests on one test site (which can vary with tidal fluctuations).
- Further testing of the LNAPL transmissivity application method is recommended on other sites to provide more confidence in the methods used here.



#### Thank you.

