Chemical and Biological Degradation of Insensitive Munitions (IM) Mediated by Fe(III) Reducing Microorganisms

Kevin T. Finneran

Associate Professor Department of Environmental Engineering and Earth Sciences Department of Microbiology

Presented to the Battelle Bioremediation Symposium May 24, 2017

Overview

- Graduate students that have worked on these data, and funding sources
- What are combined biological-chemical remediation strategies
- Why might these strategies be more appropriate in some situations
- Explosives and Insensitive Munitions (IM) Biodegradation
 - Iron mediated reactions
 - Electron shuttling reactions
 - RDX mineralization in aquifer material
 - Degradation pathway and intermediates
 - Activated carbon mediated reactions with RDX
 - Degradation of 2,4-dintroanisole
 - Photobiological degradation of RDX
- Future directions and conclusions

Up front acknowledgements, the real work!

Dr. Kay Millerick Texas Tech U Env Eng Asst. Professor

Dr. Jovan Popovic U Minnesota, Biotechnology Group Post Doctoral Fellow

Dr. Jola Niedzwiecka Military U Technology Warsaw Asst. Professor

Dr. Man Jae Kwon KIST Biotechnology Group Assoc. Professor

Supported by

DoD Strategic Environmental Research and Development Program (SERDP), ER-2222 and ER-1377 US EPA STAR Program US Graduate Assistance in Areas of National Need (GAANN) Burns and McDonnell

Total Funding: \$1.483M, 13 years

Masters Students: Yang Zhang (Consulting, China); Patricia Shin (Consulting, US); Neeraja Ramasubramanian (Consulting, India); Ayusha Khanna (Consulting, India); Sarah Galloway (Consulting, Ryder Truck Company Remediation, US), Kameryn McGee (in progress)

Undergraduates Trained on these projects: Ivy Choi, Anna Knussmann, Rachel Castillo, Erin Grubbs, Kathryn Fauerby, Jessica Bush, Gina Straga, Alexandra McIntyre, Kelsey Herring, and Olivia Felber

What do we mean by "combined reactions"?

Electron donors can be contaminants or labile substrates

compounds)

Explosives and Insensitive Munitions

Over 1,200 sites in the U.S. and 2,000 sites in Europe have been contaminated by explosives

Explosive	Molecular	Solubility in	Reduction
	mass [g/mol]	water [g/L]	potential [V]
RDX	222.12	38.9 mg/L (low	-0.55
		to negligible)	
HMX	296.16	6.63 mg/L (low)	-0.66
TNT	227.13	insoluble	N/A
NTO	130.07	12.8	N/A
DNAN	198.13	sparingly	-0.40
		soluble	
NQ	104.07	3	-0.70

RDX is a possible human carcinogen (the lifetime health advisory in drinking water is $2\mu g/l$) HMX may damage the central nerve system (the lifetime health advisory in drinking water is 0.4mg/l) IM such as 2,4-dinitroaniosole and 3-nitro-1,2,4-triazole-5-one (NTO) are currently being investigated in novel explosives composites for DoD use

Niedzwiecka and Finneran, RSC ES:WR&T, 2015, V1(1), Page 34-39

Conceptual Model Summarized

Anthraquinone-2,6-disulfonate (AQDS)

Anthrahydroquinone-2,6-disulfonate (AH₂QDS)

The hydroquinone form has two dissociable protons

Combined reactions for next gen insensitive munitions

Adapted from Niedzwiecka and Finneran, 2015, ES-WR&T 1: 34-39

DNAN reduction by ferrous iron at pH 7, 8, and 9 (left), and AH₂QDS (right), with all reaction products shown

Adapted from Niedzwiecka and Finneran, 2015, ES-WR&T 1: 34-39

Proposed DNAN reduction pathway by ferrous iron, electron shuttling, and Fe(III)-reducing microorganisms

DNAN reduction GS-15 cells alone (A), cells plus acetate (B), with AQDS (C), with AQDS and Fe(III) (D), with Fe(III) (s) alone (E), and with Fe(III) citrate (aq) (F)

Short and long term mass balances for DNAN degradation by chemical or biological mechanisms

Table 1. Mass Balance (%) Following DNAN Reduction and Transformation Products Formation by Abiotic, Biological and Mixed Abiotic-Biological Pathways

	Short term mass balance (%)			Long term mass balance (%)		
Compound	Fe(II) alone, pH 7 (abiotic) ^a	Fe(II) alone, pH 8 (abiotic) ^b	Fe(II) alone, pH 9 (abiotic) ^c	Fe(II) alone, pH 7 (abiotic) ^d	Fe(II) alone, pH 8 (abiotic) ^e	Fe(II) alone, pH 9 (abiotic) ^f
C7H6N2O5 (DNAN)	8.71	0.39	0.40	0.00	0.26	0.01
C7H8N2O3 (MENA)	27.02	6.68	1.42	53.58	12.69	1.04
C7H8N2O3 (iMENA)	3.91	1.62	0.34	-	-	-
C7H10N2O (DAAN)	0.59	0.97	3.56	-	63.74	91.58
total	40.23	9.66	5.72	53.58	76.69	92.63

	Mass balance (%)					
Compound	cells alone (biological) ^g	cells + AQDS (mixed) ^g	cells + FeGel (mixed) ^g	cells + FeCit (mixed) _g	cells + AQDS + FeGel (mixed) ^g	
C7H6N2O5 (DNAN)	0.44	0.01	0.12	0.01	0.02	
C7H8N2O3 (MENA)	53.78	0.08	41.53	33.83	0.00	
C7H8N2O3 (iMENA)	18.67	0.00	15.53	6.89	0.00	
C7H10N2O (DAAN)	26.32	82.79	1.81	75.23	145.07	
total	99.21	82.88	58.99	115.95	145.09	

Measured at ^a24 h, ^b1 h, ^c2 min, ^d96 h, ^e24 h, ^f52 min, ^g30 h.

DNAN reduction by *Geobacter metallireducens* in the presence and absence of Fe(III) and AQDS at pH 7

DNAN reduction by Shewanella oneidensis in the presence and absence of Fe(III) and AQDS at pH 7

DNAN reduction by *Geobacter metallireducens* in the presence and absence of Fe(III) and AQDS at pH 7

Nitroguanidine Degradation (NQ)

NQ reduction by ferrous iron alone, or in the presence of the ligand 2,3,4-trihydroxybenzoic acid (THBA) at pH 6, 7, 8, and 9 (A to D, respectively)

Photobiological Degradation of RDX

RDX reduction by *Rhodobacter sphaeroides* in the presence and absence of the electron shuttle AQDS

This is anoxygenic photosynthesis; it requires an organic or inorganic, but non-water, electron donor (in this case succinate)

RDX reduction by *Synechocystis strain PCC 6803* in the presence and absence of the electron shuttle AQDS

This is oxygenic photosynthesis; it requires water as the sole electron donor; so the system is essentially: *cells* + *contaminated water* + *light* = biodegradation!

Conclusions

- 1. Combined biological and chemical reactions can be more effective than either biological reaction or chemical reactions alone
- 2. Explosives and IM are readily reduced to innocuous or less toxic products by cells + iron, or cells + electron shuttles
- 1. We developed the first photobiological RDX degradation system, in which water itself (with light energy) provides the electrons to reduce RDX to innocuous end products
- 2. These strategies are all predicated on a strong understanding of Fe(III)-reducing microorganisms
- 3. Although we did not discuss it, this also works in reverse, in which chemical remediation amendments stimulate microbial activity
- 4. Other contaminants including metals, metalloids, radionuclides, and chlorinated compounds can be degraded more quickly, and more completely, when biological and chemical reactions are combined

Acknowledgments

We also thank:

Dr. Paul Hatzinger (CB&I Services) Scott Drew (Geosyntec)

Picatinny Arsenal USACE CERL USACE WES

If you need research: Finneran Research Group, Clemson University, ktf@clemson.edu, www.clemsonbioremediation.com

If you need consulting:

Finneran Environmental, LLC, kevin@finneranenvironmental.com, www.finneranenvironmental.com