

human energy[®]

An Industry Perspective on Remediation Portfolio Optimization Efforts

Eric J. Daniels Chevron Energy Technology Company, San Ramon, CA

Gesele McQueen Harris

Chevron Environmental Management Company, Houston, TX

Presentation Overview

- Drivers for Optimization
- Optimization Objectives and Strategies
- Best Practices and Lessons Learned Examples
- Conclusions

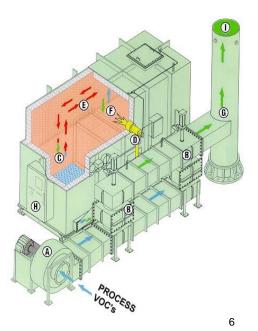
Drivers to improve and optimize remediation program

Project lookbacks revealed cost-saving opportunities:

- Observations:
 - Systems run past point of practical limit of mass recovery in attempt to achieve soil/groundwater remedial objectives
 - Scope creep beyond initial project design
 - Failure to satisfy remediation drivers and achieve objectives resulting in multiple remedial attempts
 - \rightarrow Leading to higher than expected remediation costs and timeframe
- Root causes: Inconsistent remediation decision-making
 - Technology selection
 - Remediation system design
 - System operation and optimization
 - System performance monitoring and criteria
 - Shutdown strategy and decisions

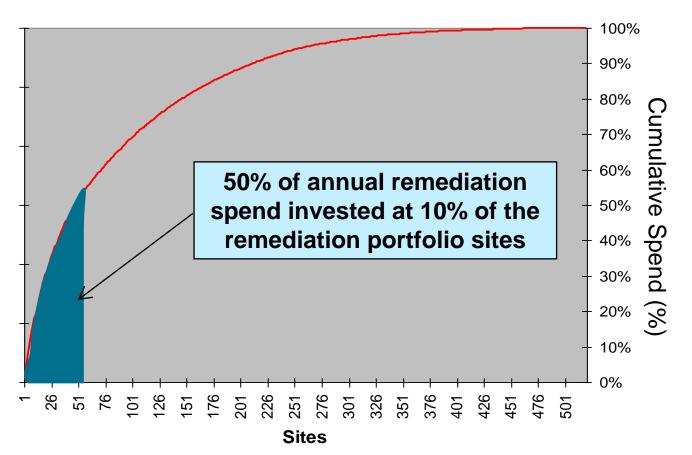
Remediation Portfolio Optimization Objectives

- Improve safety and reliability of mechanical systems
- Reduce average system operation lifecycle (improve efficiency)
- Reduce remediation recycles and scope creep
- Consistency in remedial alternative selection, design and project execution, based on:
 - Hydrogeological conditions and sufficient source delineation
 - Clarity and agreement on remediation drivers and objectives
 - Feasibility assessments; probability of success evaluation
 - Performance and shutdown criteria
 - Safe and reliable system designs


Optimization Strategies

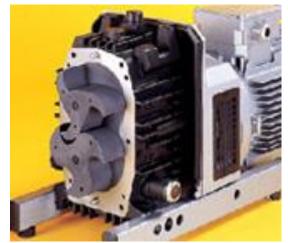
- Build Organizational Capability: Adopt a "learning organization" approach
 - Centralized subject matter expert peer teams
- Standardization: Best practices for safe, reliable and efficient system operation
 - Standard system designs
 - Standardize procedures for performance monitoring, optimization, shutdown
- Incorporate probability of success and consequences analysis with lifecycle cost estimates
- Supply chain optimization: contracting strategies, change management

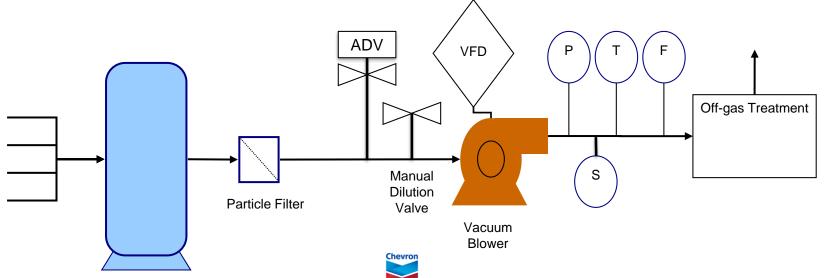
Organizational Capability: Centralized Subject Matter Expert Peer Team


- Comprised of Chevron and consultant experts, Chevron project manager
- Leverage diverse expert experience
 - Geologists and engineers; technical and business perspectives
- Develop and communicate best practices/ lessons learned
 - Technology evaluation and selection, strategy alignment
 - Remediation design, optimization and monitoring
- Remediation performance reviews and lookbacks
- Quality control remediation strategies:
 - Improve alignment between technology selection/design and stakeholder remediation objectives

Peer Review Focus on Higher Cost Remediation Projects

- Mechanical Remediation Systems
- Excavations

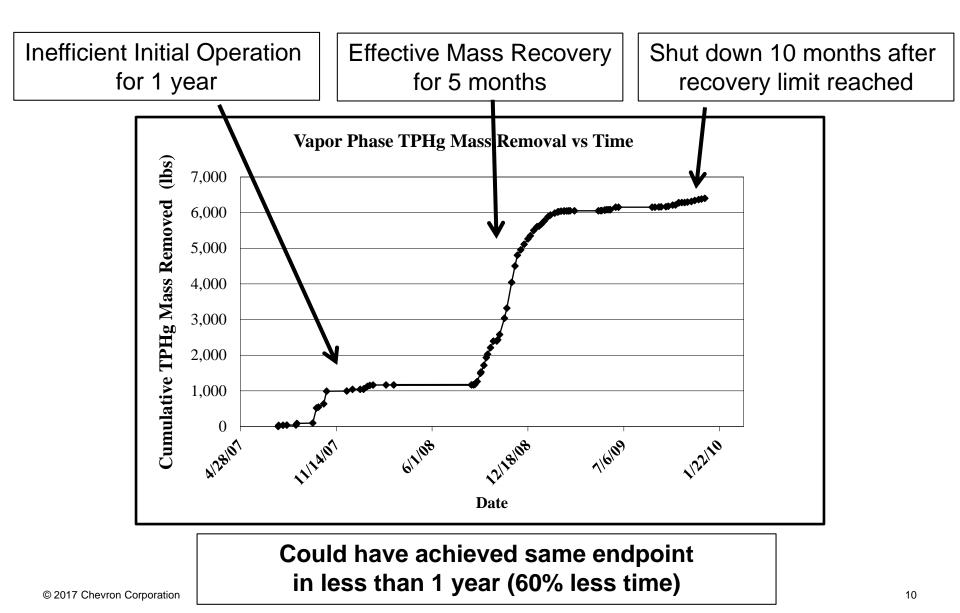




Standardization System designs

Objectives

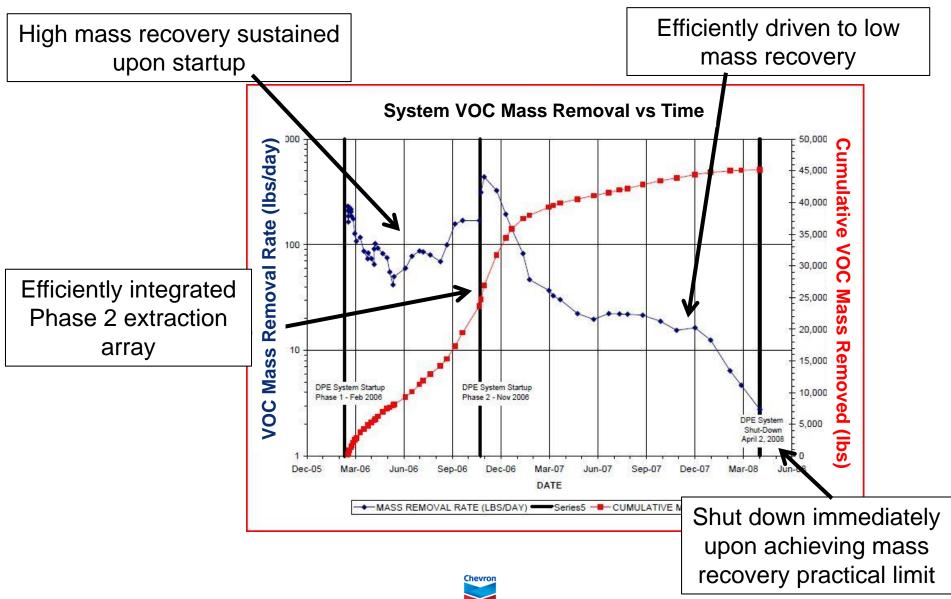
- Reliably achieve subsurface performance requirements
- Effective critical safety devices
- Equipment provides high uptime operation, minimize treatment process bottleneck
- Facilitate capital equipment reuse



Standardization of Best Practices Performance monitoring, optimization, shutdown

- Focus monitoring and timely optimization decisions on key performance criteria
 - Early Recognize need to modify system design or operation
 - Later Drive pace to achieve shutdown criteria
- Need to decouple system shutdown criteria from soil and groundwater remedial objectives
 - Do not continue to operate system that has reached practical limit of mass recovery
- Have a system "exit strategy" plan
 - Anticipate approach to practical limit of remedial benefit
 - Proactive communications and remedial success demonstration activities

Optimization and Efficiency Evaluation System Vapor Mass Removal Data



Higher O&M Costs During Poor Uptime Periods

Example of Efficient Optimization and Shutdown Decisions

Standardization of Best Practices Activities Prior To Remediation Implementation

- Sufficient delineation and proactive stakeholder engagement prior to remediation selection and design will help:
 - Align remedial strategy with site conditions and stakeholder expectations
 - Right-size remediation design
 - Avoid scope creep
 - Excavation Scenario: Dig much more dirt than planned
 - Mechanical System Scenario: Need to expand well array, extend period of active remediation after completing planned remedial scope
- Proactive agreement with stakeholders include
 - Location-specific remediation success objectives
 - Basis (criteria) for system shutdown
 - Conditions needed to move to more passive remedial alternatives

Incorporate probability of success into alternative selection

- Focus on only NPV does not always drive best selection
 - Lowest cost alternative not always the best
 - Particularly in cases where higher cost alternative has a high probability of success, and lower cost alternatives have significant uncertainty
- Understand key failure criteria
 - Site-specific subsurface characteristics indicating likelihood of failure
 - Pilot tests, hydrogeological characterization
 - System performance criteria that must be achieved to avoid failure
- Understand consequence of failure
 - remedial recycle potential, liability management
- Focus on a toolbox of a few well-understood technologies
 - Want technologies with measurable performance criteria and remedial progress metrics, and can knowledgably adjust to efficiently manage, optimize and shut down
 - Less favorable (greater uncertainty) for "black box" and novel alternatives

Summary

- Critical to incorporate probability of success and contingency costs into alternative selection
- A clear understanding of drivers, location-specific remedial objectives and source delineation is critical to optimizing system design and level of effort
- The majority of remedial failures and cost overruns are due to:
 - Poor understanding of hydrogeological factors that influence failure risk
 - Inadequate source delineation
 - Inattention to key remediation system performance and shutdown criteria
 - Insufficient monitoring and optimization practices
- Use of standardized remedial equipment design provides not only safe and reliable operation, but also yields significant cost savings opportunities (capital reuse)
- Effective change management is critical
 - Maintain understanding of site history, prior decisions, recommendations and expectations when internal or external project managers change

