

REMEDY PERFORMANCE REPORTING

driving remediation system optimization and site progression

Richard Evans, PE (GES)

Chuck Blanchard, PE (AMEC Foster Wheeler)

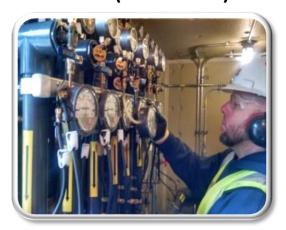
David Sweeten, PG, CGWP (Glenn Springs Holdings)

Agenda

- A Programmatic Approach to OM&M
- Field Data and Optimization
- Key Performance Indicators (KPIs)

A PROGRAMMATIC APPROACH

establishing a framework


Types of OM&M Projects

Groundwater extraction
Vapor extraction
Air sparging, biosparging
Multi-phase extraction
NAPL recovery
Vapor mitigation
ISCO and ozone sparging
Storm/ surface water treatment
Leachate recovery and treatment
Landfill gas management

Soil cap
Barrier wall
(sheet piling)
Permeable reactive
barriers
Landfill cap
Phytoremediation
NAPL sorbent socks
MNA

ISCO
ISCR
Bioremediation
MNA
Surfactant
In-situ activated carbon
Dewatering
Vacuum truck programs

Active (Mechanical)

Passive (Non-mechanical)

Other (Short-term, temporary)

OM&M Program Benchmarking

Program Element	Major Oil	Major Oil	Major Oil	Divers. Mfg	Major Oil	Aero. Mfg	Chem. Mfg	Pipeline Co.	Power Utility
Defined OM&M Practices									
Defined Work Scopes / Units									
Defined MOC Processes									
Performance Scorecards									
MMS									
Defined Technical Reporting Requirements									
Defined Financial Reporting Requirements									
Formal Site Review / Audit Process									

OM&M Priority Benchmarking

Remediation introduces immediate risks that were not present prior to implementation.

Why is Management of Change Important?

Changes occur during OM&M

- Often less rigorously evaluated and reviewed
- May be "field determinations"
- Introduces new or different risks
 - > Injury to site workers
 - > Permit non-compliance
 - > Loss of treatment efficiency
 - > Exceed design flow rates
 - > Damage to equipment

Audits and Peer Reviews

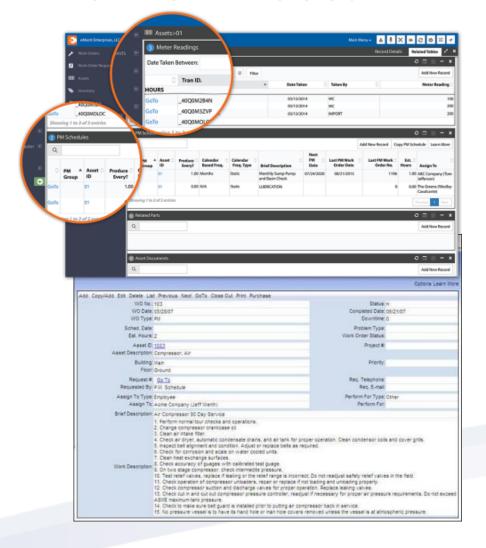
Safety & Compliance Audits

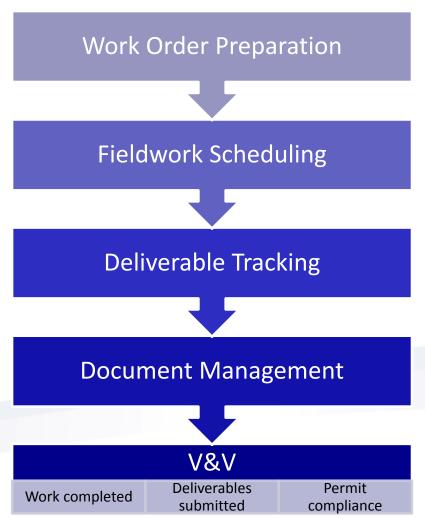
- Internal and/or third party
- Avoid injury and related costs
- Avoid downtime
- Avoid regulatory and public scrutiny:
 - > Consent orders, permit non-compliance
 - > Re-work

Peer Reviews

- Get new perspectives on languishing issues
- Break status quo for continuous improvement

Engage stakeholders in the process.
Assign action items and accountability for further vetting and/or implementation.




FIELD DATA AND OPTIMIZATION

working together

Workflow Proces

Select System Data

Flow rate	NAPL thickness	Operator hours	Process data
Mass flow rate	Mass recovered	Utility costs	(pressure, flow)
NAPL recovery rate	COC concentrations	Uptime	Chemical usage rate
Pore volumes recovered	PID and LEL	Sustainability factors	Equipment hour meter
Groundwater geochemistry	Groundwater elevation	Waste generation	Permit compliance data

Every piece of data collected should be used.

Timely review data and trends.

If data is not being used,

- 1. Should it be used?
- 2. Is it valuable for later use?
- 3. Should it be collected?

Remedial Process Optimization (RPO)

	Protective of human health and environment				
Remedy Optimization	Hudraulic control and pluma captura	Subsurface barrier			
	Hydraulic control and plume capture	Groundwater extraction system			
	Contaminant concentrations in soil and groundwater	Stabilization, reduction			
	Vapor intrusion mitigation				
	Soil cap condition				
	Permit and regulatory compliance				
Process Optimization	Flow rates and pressure				
	Process stream chemistry	Contaminants, pH			
	Equipment cycling rates, condition, life cycle				
	Treatment train effectiveness and necessity				
	Chemical/consumable usage				
	Waste generation volume and frequency				
	Data collection needs	Field			
	Duta concention needs	Laboratory			
	Control logic appropriateness				
	Process safety management				

Industry Optimization Approaches

- Traditionally viewed as separate from OM&M
 - > Defined process
 - > Holistic review of remedy success/progress
 - > Cost review
 - > Treatment train evaluation
 - > Safety review
- Increasingly considered part of OM&M
 - > Some have defined process
 - > Expectations often less clearly defined
 - "Reduce cost"
 - "Site progression"
 - > May be expected as "value-added" service

Ensure remedy
performance is
routinely monitored
and continuously
improved.
Optimization almost
always leads to the
need to implement a
management of
change process.

KEY PERFORMANCE INDICATORS

selecting the right metrics

Performance Metrics: KPIs

defining objectives and measuring performance

Program KPIs

- Health and safety
- Regulatory compliance
- Schedule compliance
- Financial & cost savings
- Project progression
- Peer reviews
- System performance
- Optimization

Site-specific KPIs

- Operating as designed
- Mass removed / treated
- Uptime
- Carbon footprint
- Inspections

Select remedy performance KPIs that provide a quantitative measure of remedy performance toward remedial goals.

KPI Selection

- If met, site will reach remedial goals in the predicted time
- Evaluate the rate at which the site is remediated
- Benchmarked against established standards
- Specific to a site, system, and a remedy
- Defined prompt action plan for deficiencies

Uptime

- Good first look
- Identify problematic systems or trends
- Always tracked but minimal diagnostic value

Mass Recovery

- Track as total mass, rate, or \$/lb
- Value dependent on initial mass estimate
- Tracking by well or area useful

Supplemental KPIs

- Specific to a given technology and site
- Targeted to evaluate rate at which system is achieving remedial goal or evaluate key operational parameters
- Monitor changes in regulations and site use

SVE Examples

- Pore volume exchange rate at maximum ROI
- O₂ and CO₂ concentrations
- Vadose zone temperature changes
- Respiration test data

LNAPL Recovery Examples

- Actual vs. predicted recovery rates
- Recovery per unit area
- Changes in transmissivity at recovery and monitoring wells
- Apparent thickness (often regulatory closure criteria)

Key Takeaways

- Build "fit for purpose" OM&M program
 - > Safety, cost, change management, and KPIs
- Use independent "fresh eyes" reviews to share best practices, highlight innovation, and continuous learning opportunities
- Select useful OM&M data to collect
- Optimization is change
- Standardize performance tracking, but allow flexibility in sitelevel implementation

Thank you.

Richard Evans, PE (GES) revans@gesonline.com Chuck Blanchard, PE (AMEC Foster Wheeler) David Sweeten, PG, CGWP (Glenn Springs Holdings)

