Adsorption of Munitions Constituents via Cellulose, Cellulose Triacetate, Chitin, and Chitosan

Mr. Luke A. Gurtowski

Research Chemical Engineer
Environmental Laboratory
U.S. Army Engineer and Development Center

April 2018

Executive Summary

- Background
 - Insensitive munitions
 - Benefits
 - Environmental Concerns
 - Treatment Technologies

- Evaluations and Discussion
 - Adsorptive Removal
 - Isotherm Models
- Conclusions

Munitions Constituents

Traditional Munitions

2,4,6-trinitrotoluene (TNT)

Hexahydro-1,3,5trinitro-1,3,5-triazine (RDX)

Insensitive Munitions

2,4-dinitroanisole (DNAN)

Nitroguanidine (NQ)

Nitrotriazolone (NTO)

1,1-diamino-2,2-dinitroethene (FOX-7)

- Insensitive munitions (IMs) are currently being evaluated as alternatives to traditional munitions
- IM formulations contain more than one constituent

IM Properties

Compound	Aqueous Solubility (mg/L)
NTO	12,800 (19 °C)
NQ	4,100 (26 °C)
DNAN	280 (25 °C)
TNT	130 (20 °C)
RDX	43.2 (25 °C)

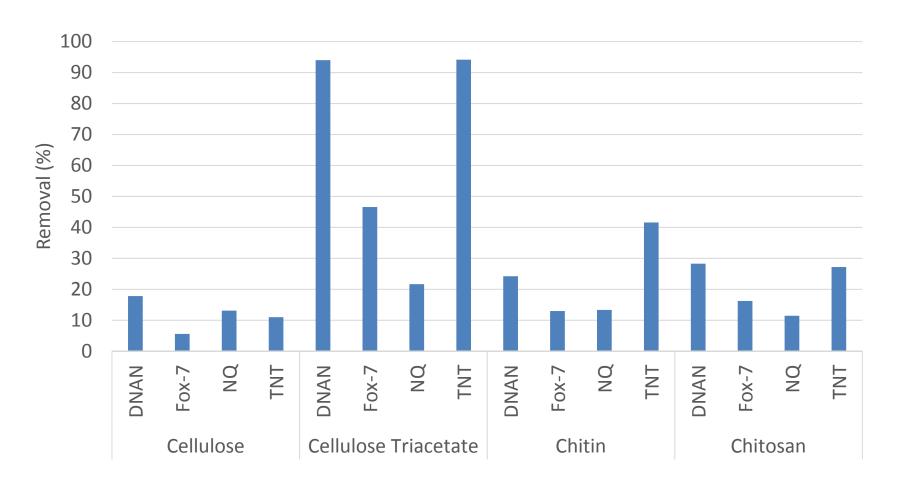
- Yellow color associated with IM formulations
- pKa of NTO = 3.76

Polysaccharide Adsorbents

- Cellulose and chitin are two most abundant biopolymers in the world
- Derivatives formed from acetylation and deacetylation processes

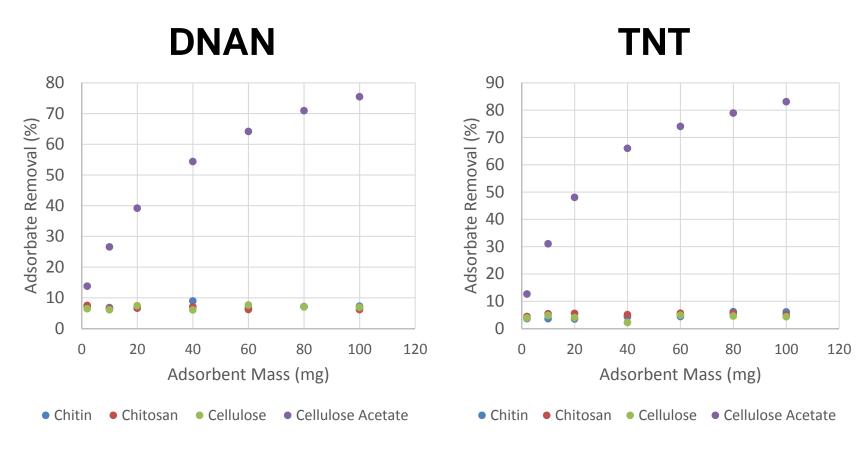
Chitin

Cellulose

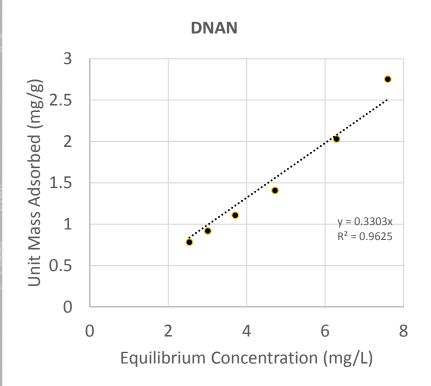

Chitosan

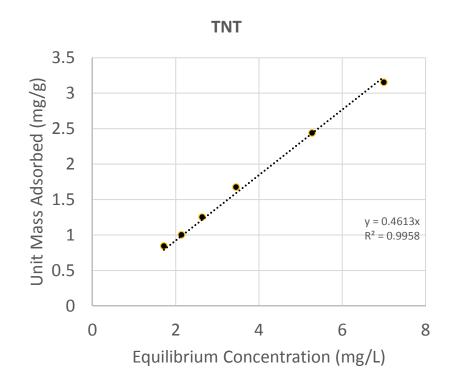
Cellulose Acetate

Scope


- Proof-of-concept evaluation
 - 10 mL aliquots of 2-mg/L solution vs. 500 mg of each adsorbent
 - DNAN
 - NQ
 - TNT
 - FOX-7
- Preparation and evaluation of isotherms
 - Successful adsorbate-adsorbent mixtures

Proof-of-concept Evaluation


- Definitive adsorption of DNAN and TNT via cellulose triacetate.
- Chitin and chitosan show potential adsorption of TNT.


Preparation of Isotherms

- 10-mL aliquots of 10-mg/L solutions vs. various adsorbent masses
- Only cellulose acetate showed observable adsorption trend

Cellulose Triacetate Isotherms

Compound	Distribution Coefficient (mL/g)
DNAN	330.3
TNT	461.3

Discussion and Next Steps

- DNAN and TNT display high affinity for cellulose triacetate.
 - Linear adsorption models applicable
 - Moderate removal of FOX-7 via cellulose triacetate
 - Electron-withdrawing groups cause adsorption
- All adsorbents show very low affinity for NQ and inconsistency for NTO
 - NTO is currently undergoing evaluation
- Next steps
 - Evaluate polysaccharides with electron-withdrawing groups to optimize removal
 - Produce adsorbents for removal of each IM

Applications

 Utilization within industrial base for process water treatment

 In-situ surface water treatment technology for training ranges

Sustainable alternatives to GAC and destructive processes

Conclusions

- Cellulose, chitin, and chitosan are ineffective at removing IMs from solution
- Cellulose triacetate is an effective adsorbent for DNAN and TNT
- NTO speciation provides inconsistent adsorption results
- No material evaluated in this study successfully removed NQ from solution
- Associated Journal Article:
 - Gurtowski, L.A., C.S. Griggs, V.G. Gude, M.K. Shukla. 2017. An integrated theoretical and experimental investigation of insensitive munition compounds adsorption on cellulose, cellulose triacetate, chitin and chitosan surfaces. *J. of Environmental Sciences*.

Innovative Solutions for a Safer, Better World

Engineer Research & Development Center