# In Situ Thermal Remediation in Europe: Advances and Lessons Learned at Multiple Sites (2005 to Present) James Baldock, Jay Dablow and Kathryn Johnson

© Copyright 2018 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

FRN











#### Introduction



#### Number of EMEA Thermal Remediation Projects

The business of sustainability





#### Introduction







## Site 1 (2005): Overview







## Site 1 (2005): Lessons Learned



- System over-designed
- Pilot test on the things we knew
- Construction took way longer than expected
- Steam injected 24/7 into heating locations – no optimization
- Basic temperature tracking only





## Site 2 (2009): Overview





7





## Site 2 (2009): Lessons Learned (1)

- Simpler Contract Structure
  - Engineering contract versus solution driven service
  - Consider lump sum instead of risk/reward, or if risk/reward think carefully about the structure
  - Use 'Turnkey' model for remediation delivery, where appropriate

#### Contractor Selection

- Change of key personnel in small companies can materially change your relationship – how do you avoid that?
- Broader economic context hard to foresee

8

The business of sustainability

Contractual Arrangement

Contractor Approach

Schedule and Budget Delivery



## Site 2 (2009): Lessons Learned (2)



- Technical Aspects
  - Drilling issues (Turnkey approach)
  - Robust HAZID/HAZOP during the design process
  - Bench Test tar issues recognised, but would have provided better evaluation of conditions under heating before project starts







The business of sustainability

## Site 3 (2012): Overview







ERM

### Site 3: Lessons Learned (1)













- Design issues still no formal process safety review
- BUT: HRSC benefits and optimisation carried out
- Biological/thermal combination developing



#### Site 3: Lessons Learnt (2)









## Site 4 (2013): Overview



ERM

13

#### Site 4: Lessons Learned (1)







A - Site B - Landfill



The business of sustainability

### Site 4: Lessons Learned (2)





**Temperature response at different depths** 



Date



## Site 5: (2015): Overview









#### ٭ ج<mark>رد</mark> م

#### Site 5: Lessons Learned



The business of sustainability

17

- Thermal modelling Petrasim
- Best Management Practises in design (USEPA)
- Automatic thermocouples link to PLC
- Low Temperature Volatilisation



Office of Solid Waste and Emergency Response (5203P)

Green Remediation Best Management Practices: Implementing In Situ Thermal Technologies



#### Low Temperature Volatilization (LTV)

- Initial target temperature based on traditional volatilization
- LTV Concept: CO<sub>2</sub> generated and released can also remove VOC contamination. LTV reduced CO<sub>2</sub> consumption by 16%
- At this site lowered treatment temperatures from ~150°C to an average of 80°C (heating time 80 days compared to the 120 modelled)







#### Main Lessons Learned

- Collaboration is key to the successful use of thermal technologies: it works and is safe!
- Multiple benefits of carbon footprint reduction from design to implementation
- Technology has not changed significantly but innovation has reduced energy, cost and time.









## <u>Summary</u>

|                               | 2005                                                          | 2010                                                | 2015                                                                           |
|-------------------------------|---------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|
| Contract                      | Hire turnkey contractor/<br>difficult contractual<br>endpoint | Less difficult endpoint/<br>collaboration improving | ERM design/contractor supply equipment                                         |
| Safety                        | Personal safety good –<br>but no HAZOP                        | Basic HAZOP                                         | Full HAZOP                                                                     |
| Carbon Footprint<br>Reduction | Who cares?!                                                   | Included in options<br>appraisal                    | Low temperature<br>application<br>biological links<br>process equipment design |
| Technical (Design)            | Over designed                                                 | Field trials<br>basic models                        | Field trials<br>full models<br>bench tests                                     |
| Technical (Installation)      | Bentonite seals                                               | Thermal grout                                       | Thermal grout                                                                  |
| Technical (Monitoring)        | Water temperatures in wells                                   | Manual thermocouple measurement                     | Automatic thermocouple database/website                                        |

The business of sustainability





#### Future Trends?

- More thermal remediation projects and geographical spread as the remaining contaminated land sites become more complex
- New geographies: Once you do one, others follow
- Temperature decrease:
  - LTV approach to reduce the target treatment temperature from that traditionally applied
  - Use of alternative recovery mechanisms to volatilisation to recover contaminant mass, and/or integration with follow on biological approaches
- Technology increase:
  - Real time monitoring/data management
  - Multiple heating techniques



#### Contact Info



James Baldock *Technical Director* ERM James.Baldock@erm.com



Jay Dablow *Technical Fellow* ERM Jay.Dablow@erm.com



Conference on Remediation of Chlorinated and Recalcitrant Compounds

April 8-12, 2018 | Palm Springs, CA



Kathryn Johnson Senior Consultant ERM Kathryn.Johnson@erm.com







