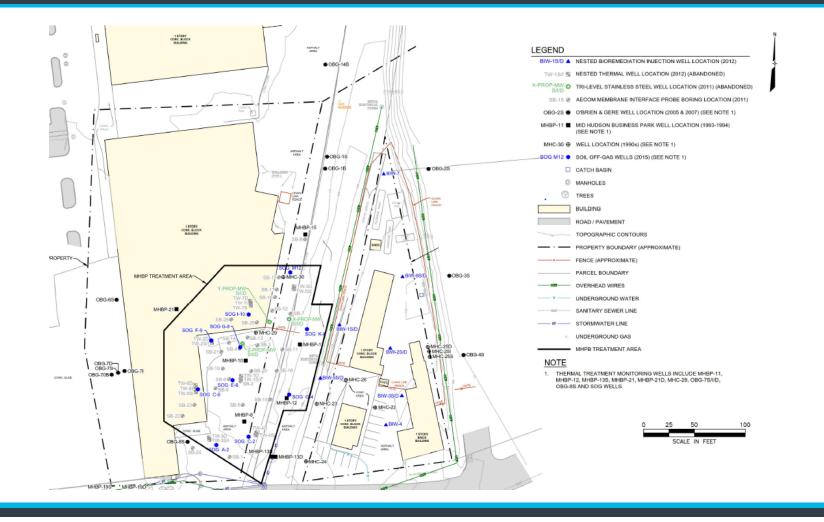
Battelle

2018 Chlorinated Conference | April 8-12 | Palm Springs, CA

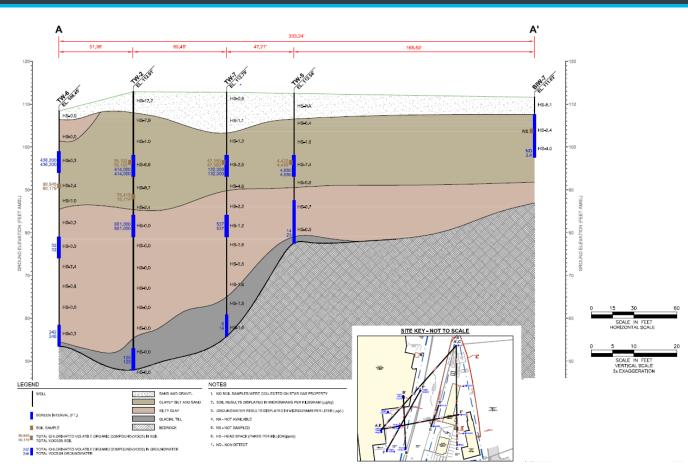
In Situ Hydrolysis and Thermal Treatment of 1,1,1-TCA during Electrical Resistance Heating

Art Taddeo, Shamim Wright, Lindsay Mitchell, and Paul Dombrowski

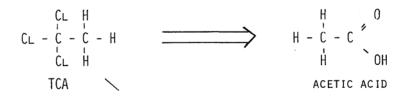

April 9, 2018

Site Description

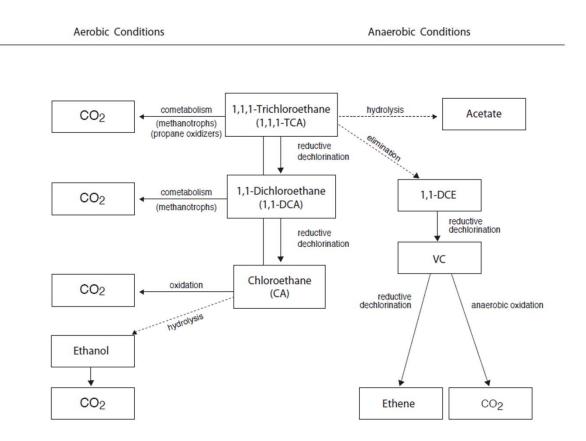
- 5 acre parcel in mixed zoned area; Site has vacant building and open/paved ground
- Formerly an automobile manufacturing plant and a publishing/printing business
- Contaminated due to historical site operations plus a chemical warehouse fire on adjacent uphill property


Site Plan

AECOM


Site Description

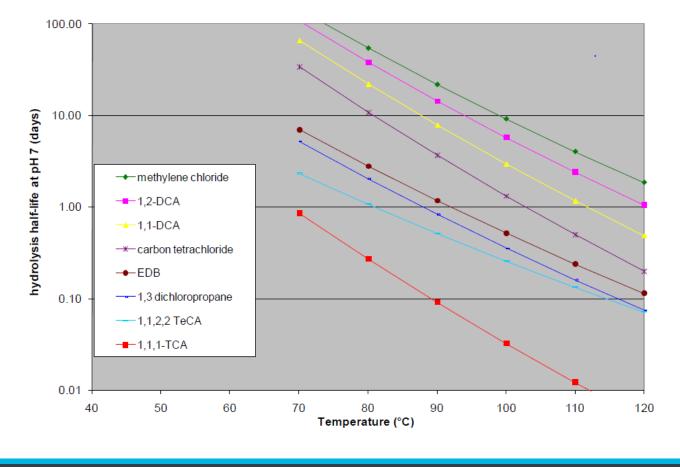
- An unconsolidated soil aquifer underlain by a shallow bedrock aquifer; groundwater at 5 ft bgs
- Contaminants limited to unconsolidated aquifer from 5-50 ft; majority from 10-20 ft
- COC consist of 1,1,1-TCA, 1,1-DCA, 1,2-DCA, 1,1-DCE, plus other minor solvents
- Total CVOC impacts up to 1,342,000 µg/l or NAPL levels
- 1,1,1-TCA is the principal contaminant (max levels)
 - Soil 480,000 mg/kg
 - GW 1,000,000 µg/l



Natural Environmental Fate of 1,1,1-TCA

- Volatilization (1,1,1-TCA vapor pressure 122 mm Hg at 20 ° C)
- Dissolution and migration (solubility 1255-1500 mg/l; Henry's Law constant 1.76)
- Biological degradation (aerobic oxidation, co-metabolic, anaerobic)
- Abiotic transformation
 - Hydrolysis
 - 70% Substitution (SN1 mechanism)
 - major pathway; product is acetic acid
 - 30% Elimination (alternative less common pathway)
 - favored at higher pH; also increases at higher temperatures; product is 1,1-DCE
 - Geochemical reactions (iron reactive mineral process)

Transformation Pathways for 1,1,1-TCA

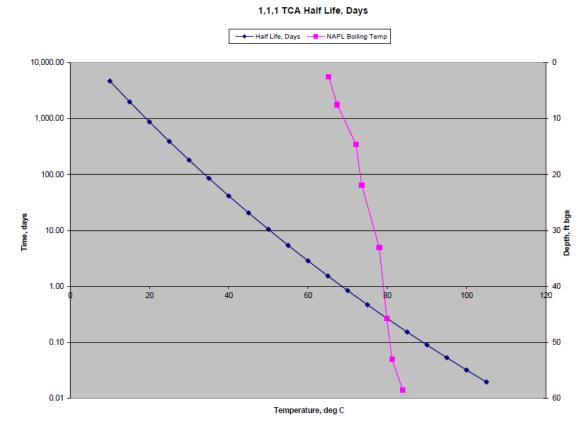

TCA Hydrolysis Kinetics

7

- Since water is freely available, only 1,1,1-TCA concentrations affect the rate and so the reaction can be considered first-order
- Rate of hydrolysis of 1,1,1-TCA is dependent on temperature but relatively independent of pH between 4 and 9
- The half-life (t ½) is the time needed for 50% of the reactant to be consumed by a reaction. For the TCA hydrolysis rate:
 - t $\frac{1}{2} = \ln \frac{2}{k}$ where the reaction rate constant k increases exponentially with a change in temperature and is described by the Arrhenius equation

– Half-life at 15 ° C is 6 years but at 100° C it is 0.03 days (Jeffers et al, 1989)

Hydrolysis Rates of CVOCs with Temperature Increases



8

Hydrolysis Rates of Selected Halogenated Alkanes

Design of Treatment - Temperature Objective

- Heating can increase the rate of remediation of compounds subject to hydrolysis.
- Hydrolysis only occurs when compound is dissolved in water; heating assists by desorption from soils, dissolution of NAPLs, etc.
- Faster half-lives decrease dissolved concentrations which further enhance dissolution
- In addition to hydrolysis, heating subsurface to the boiling point of water (100° C) will address other compounds that do not undergo hydrolysis, reducing treatment time

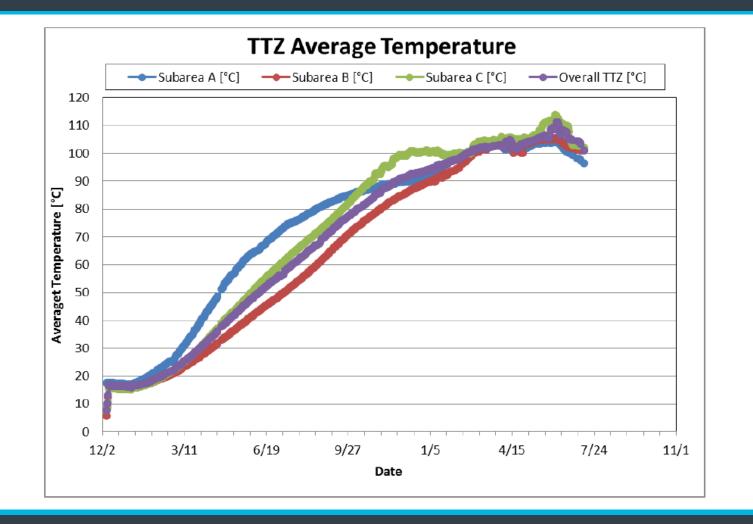
ERH Design

- ERH chosen for heating method
- Treated area 35,000 sq ft
- Three contiguous zones treated: A: 5 to 25 ft;
- B: 5 to 35 ft;
- C: 5 to 50 ft
- Goal was to reach at least 75-80°
 C for 1,1,1-TCA but extended to 100° C for other COCs
- ~100 electrodes spaced 20 ft on center with co-located and shallow steam and vapor collection vents

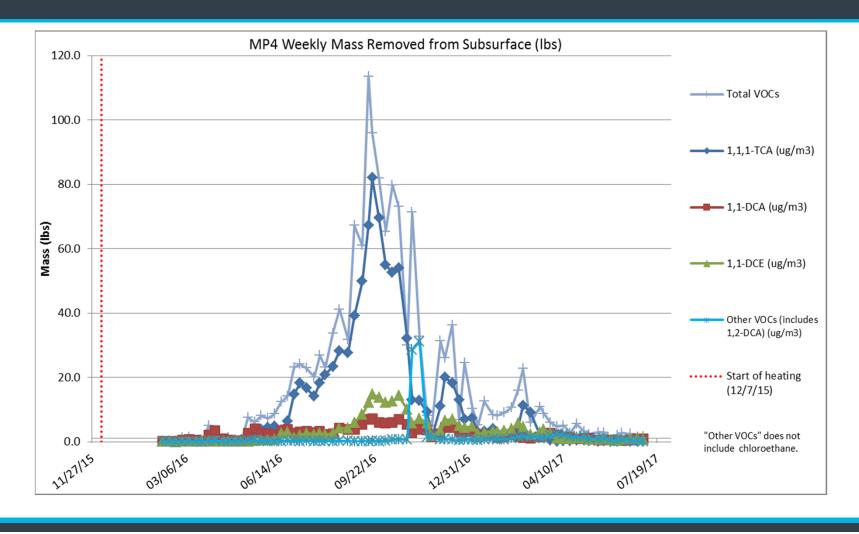
ERH Design

- Vapors, steam, and water extracted/condensed and multi-phase separation
- Treatment of wastewater and recovered vapors and discharge of effluent

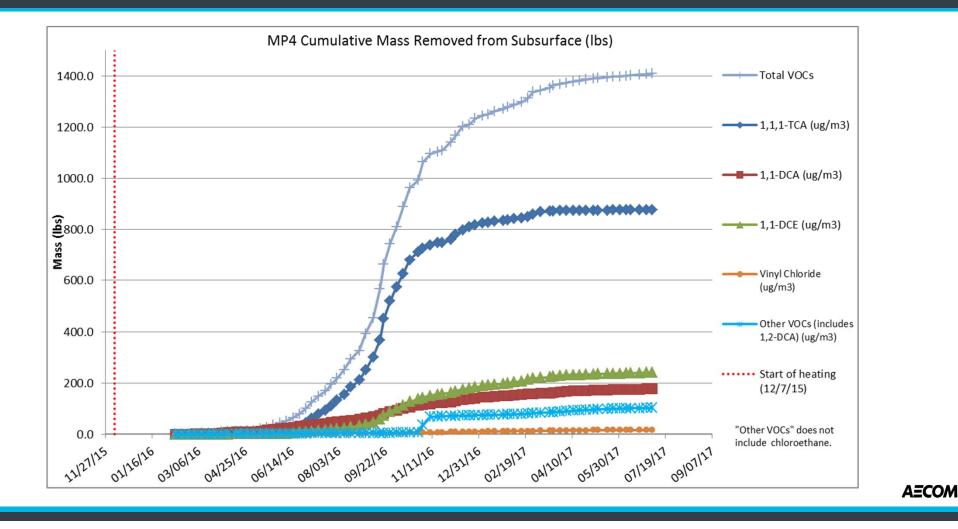
ERH Electrodes and Vapor Recovery – Outside Building


ERH Electrodes and Vapor Recovery – Inside Building

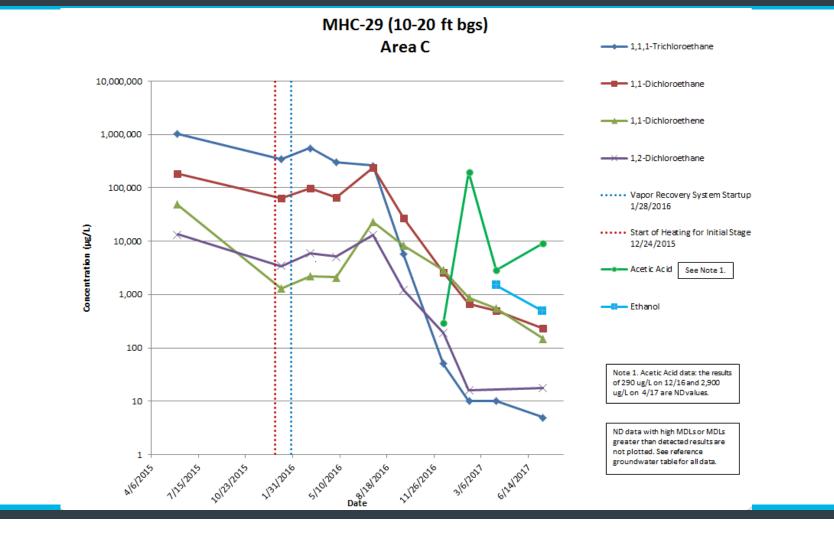
Full ERH Treatment System and Surrounding Neighborhood



Temperature Increases During ERH (2016)



AECOM


Daily Mass Recovered from Subsurface Vapor with Time

Cumulative Mass Recovered from Subsurface Vapor with Time

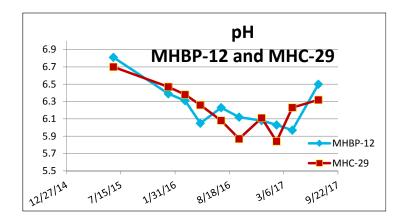
1,1,1-TCA and Acetic Acid Relationship Trends in Groundwater

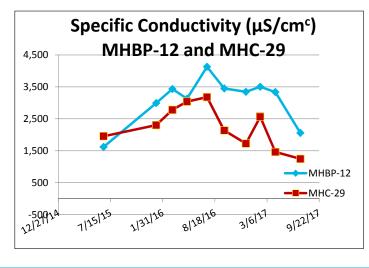
AECOM

Acetic acid mass generation and amount of TCA transformed

- $C_2H_3CI_3 + 2H_2O \rightarrow C_2H_4O_2 + 3 \text{ HCI}$
- 1 mole acetic acid is 45.5% of the mass of 1 mole of 1,1,1-TCA in hydrolysis. Therefore, 100 lb of acetic acid would be generated from 220 lbs of 1,1,1-TCA (factor of 2.2X).
- The mass of acetic acid at the site was estimated in the 10-20 ft depth interval using groundwater concentrations during thermal treatment.
- An estimated total mass of 735 lbs of acetic acid (aqueous) was calculated for the site which corresponds to **1,617 lbs** of 1,1,1-TCA hydrolyzed.
- The amount of 1,1,1-TCA hydrolyzed was most likely actually greater due to the transient nature of acetic acid (highly degradable, high solubility/migration, etc.)

1,1,1-TCA Mass Balance


- Initial (pre-treatment 2012) sorbed and aqueous 1,1,1-TCA (from 10 to 50 ft bgs)
 = ~4,200 lbs
- 1,1,1-TCA recovered from subsurface (all depths) in vapor phase = ~875 lbs
- -1,1,1-TCA hydrolyzed (estimate) = ~1,620 lbs (from 10-20 ft bgs)
- 1,1,1-TCA remaining (post-treatment) = 0.024 lbs (negligible)


♣4,200 lbs – 875 lbs – 1,620 lbs = ~1,700 lbs unaccounted for

- 1,1,1-TCA hydrolyzed is an underestimate due to short monitoring life of acetic acid,
- Some 1,1,1-TCA underwent biodegradation during the initial thermal ramp up period,
- Some 1,1,1-TCA was hydrolyzed at 20-50 ft bgs to acetic acid which was not estimated.

pH and Conductivity Changes from Hydrolysis of 1,1,1-TCA

- During hydrolysis, free protons (H+) and chlorides are produced, which decrease pH and increase specific conductivity.
- pH decreases and conductivity increases were observed and corresponded to 1,1,1-TCA decreases in 2016 when temperatures reached approximately 70 °C and hydrolysis increased significantly.

Treatment Results

- 550 days of heating
- 7 MM kWh input
- 184 kWh/cy treated
- Maximum concentration changes in select wells:
 - 1,1,1-TCA treated from 558,000 ug/l to 2 ug/l
 - 1,1-DCA treated from 306,000 ug/l to 230 ug/l
 - 1,1-DCE treated from 32,000 ug/l to 210 ug/l
 - 1,2-DCA treated from 43,000 ug/l to 82 ug/l
- Site will be monitored long term to determine if additional polishing of groundwater is necessary

Conclusions

- ERH was effective in treating significant soil and groundwater impacts of several CVOCs to low levels
- Hydrolysis is a chemical process that normally occurs at low rates in the ambient environment but can become very useful at increased temperatures
- Use of in situ (or ex situ) thermal treatment processes as part of the design to create thermally enhanced hydrolysis of selected contaminants is an important strategy
- Through the hydrolysis reaction, the compounds of concern can then either be mineralized or converted to a less recalcitrant (and likely less toxic) compound
- Resultant process can ultimately decrease treatment duration and costs

Acknowledgements

- NYSDEC
- Sealand Enviro, LLC
- Cascade/TerraTherm/Current Environmental Solutions
- Scott Underhill

Battelle

2018 Chlorinated Conference | April 8-12 | Palm Springs, CA

Thank You!

T: 978-905-2100 E: Arthur.taddeo@aecom.com