

Surprises and Mysteries from the Installation and Performance of 2,000feet of Biobarriers in Brackish Water Naval Air Station North Island, San Diego, CA

> Michael Pound, Vitthal Hosangadi, Ryley Robitaille, Pamela Chang

Project Team

Michael Pound

Vitthal Hosangadi, PE* N Ryley Robitaille, PE

* Presenting

- 1. Background
- 2. Objectives
- 3. Approach
- 4. Results
- 5. Summary and Conclusions

1. Background – NASNI OU 20

- •Cr(VI) and TCE in groundwater
- Elevated levels of Cr(VI) > 140 mg/L and TCE >100 mg/L
- Cr(VI) and TCE present in close proximity to San Diego Bay
- A Time Critical Removal Action was implemented

1.1 Background: OU 20 Conceptual Site Model

- Present an overview of lessons learned from implementation of multiple bio-barriers used to remediate the downgradient edge of a plume with multiple challenges:
 - Multiple contaminants cVOCs and Cr(VI)
 - •Elevated levels of contaminants [>100 mg/L for TCE and >140 mg/L for Cr(VI)]
 - Brackish water with high TDS
 - Complicated lithology in saturated zone
 - Large/long plume (>1/2-mile long, hundreds of feet wide)
 - Located in a very busy part of NASNI (near two active piers)
 - Multiple buried utilities

- Due to proximity of contaminants to Bay, Navy elected to implement a Time Critical Removal Action
- Selected approach would need to:
 - Be effective for both elevated Cr(VI) and TCE single technology
 - Account for high traffic/buried utilities
 - Minimize number of mobilizations
 - Minimize impacts to site activities
- Ultimately, an in-situ approach was selected: Enhanced In Situ Bioremediation (EISB)

Bench-scale Testing

- -Assessed several organic and inorganic amendments before identifying Emulsified Vegetable Oil (EVO) for bioremediation of cVOCs
- -For Cr(VI), the EVO was supplemented with a proprietary abiotic reductant
- -Bioaugmentation completely reduced Cr(VI) in as little as one day, allowing co-bioaugmentation and complete biological reductive dechlorination of TCE within 35 days

Field-scale Testing

- -Conducted at three locations each with liquid atomized injection (LAI) and direct-push injection (DPI)
- -Microbial culture was injected simultaneously
- -DPI required less distribution time, lower flow rates, and lower pressures
- –Reduction in TCE was not observed until Cr(VI) concentrations were reduced to under 10 mg/L

3.3 Approach - TCRA Injection Design

Parameter	Value	Unit	
Length of Plume	3,000	Feet	
Width of Plume	1,275	1,275 Feet	
Total Length of PRZs	2,400	Feet	
Monitoring Wells	217	Screens	
Injection Wells	376	Screens	
CPT/Hydropunch [®]	388	Depths	
DPIs	413	Locations	
EVO	46,255	Gallons	
Microbial Culture	1,121	Liters	
Total Injectate Volume	697,150	Gallons	

Summary of monitoring well locations

- •9 rounds of post-injection monitoring have occurred between 2012 and 2017
- Laboratory analyses have varied depending upon the location of monitoring wells relative to plumes and injection locations
 - -VOCs, Cr(VI), total organic carbon (TOC), DHC, volatile fatty acids (VFAs), dissolved gases (methane, ethane, ethene), nitrate/sulfate

Downgradient Monitoring Well DGPRZ Monitoring Well Intra-zone 1 Monitoring Well Intra-zone 2 Monitoring Well Intra-zone 3 Monitoring Well UGPRZ Monitoring Well

DPI Area (2012)
DPI Area (2015)
UGPRZ (2012)
DGPRZ (2015)
DDPRZ (2015)

4.1 Extent of Cr(VI) Over Time – Zone B

4.2 Extent of Cr(VI) Over Time – Zone C

4.3 Extent of TCE Over Time – Zone B

4.4 Extent of TCE Over Time – Zone C

Levels and areal extents of TCE have decreased significantly

4.5 Monitoring Results at a Typical Well

Summary of LAIMW01C - Geochemical Results

- TCE biodegraded with a robust microbial population (a population >10⁴ cells/mL is recommended)
- In a reducing environment, sulfate can be a terminal electron acceptor (reduced to sulfide)
- Good correlation between sulfate and TCE concentrations, as well as microbial population
- TOC used to track presence of the electron donor (EVO), but as mentioned previously, not always a reliable indicator
- Methane is produced when CO₂ is used as a terminal electron acceptor: Strong correlation between increasing methane concentrations and decreasing TCE concentrations

- Levels of Cr(VI) and TCE have decreased significantly since Phase I injections (2012)
- Areal extents have decreased in Zones B and C (the primary zones targeted)
- Some assumptions and conventional wisdom were confirmed, but there were some surprises or mysteries along the way

#1 – EISB works for elevated levels of TCE (>100 mg/L) and for elevated Cr(VI) (>140 mg/L) (EISB often not considered effective for high levels)

#2 – EISB works in saline environments at NASNI (EISB often not considered effective for coastal/saline environments)

Summary of MW80C: CE and Cr(VI) Results

- Decreases in TCE correlated with increases in daughter products *cis*-1,2-dichlorothene and vinyl chloride
- Similarly, decreases in daughter products correlated with an increase in ethene
- •TCE began to biodegrade following reduction of Cr(VI) to below 10 mg/L (consistent with bench-scale findings and conventional wisdom)

- Significant decrease in Cr(VI) and TCE, coupled with *cis*-1,2-DCE and VC increase in 2015
- This was 3 years after injections, which occurred 60 feet upgradient
- Sulfate (not shown) 1,000 mg/L
- Lessons learned tidal fluctuations did not impact performance (some stakeholders were skeptical during design phase)

4.10 TOC Levels in Groundwater

Location of soil investigation samples

- Initial sampling indicated TOC was not consistently observed in groundwater
- This raised questions about EVO distribution
- Soil investigation to evaluate the extent of the distribution and migration of EVO
- TOC was detected in soil samples, and black-colored soils and fermented EVO odors were noted in all soil borings
- Majority of EVO was sorbed to the soil matrix within a few feet of the injection point, which can serve as a source of dissolved electron donor for years
- Lessons learned: Dissolved TOC in groundwater may not necessarily be a reliable indicator of EVO distribution (tracers being considered for future)

4.11 Methane Generation

Summary of CH_4/H_2S Results Within Select DGPRZ Wells

Location	Dissolved CH₄ (μg/L)	CH₄ (ppm _v)	H ₂ S (ppm _v)
MW120BD	33,000	>4,268	99.9
MW110A	11,000	>4,268	11.5
MW116BD		1,017	2.2
MW107C	13,000	>4,268	99.9

- Methane readings were taken with an at monitoring wells within the DGPRZ several months after Phase II injections
- Many wells showed >1,000 ppm CH₄ in zones where injection had occurred
- High levels of H₂S also detected in several wells
- Lessons learned: high levels of methane can be generated during EISB (considering addition of antimethanogenic formulations to limit methane production)

4.12 EVO Coagulation in UGPRZ Wells

Coagulated EVO from UGPRZ Injection Wells

- EVO can coagulate in an injection well ("crud") – present several years after initial injection
- This may hinder upcoming replenishment
- Dissolution of the crud was attempted on a bench scale with water, trisodium phosphate (TSP), and Dawn detergent
- Cold water did not dissolve the crud, but hot water did until it cooled
- Some foam was observed from samples mixed with TSP
- Lessons learned: <u>Hot water will be</u> <u>used to dissolve the crud and drive</u> <u>the EVO out into the formation</u> <u>prior to replenishment</u>

- Replenishment of Phase I UGPRZ wells: 3Q 2018
- •DPIs to address residual elevated Cr(VI) and TCE: 3Q 2018
- •Recirculation zone to address elevated Cr(VI) under a busy road (using new and existing wells): 3Q/4Q 2018
- •Other electron donors being evaluated
- •Tracers (Rhodamine WT) being considered as an additional measure of amendment distribution

- •EISB is effectively remediating elevated TCE and Cr(VI) [> 100 mg/L and 140 of mg/L] in brackish water at NASNI
- •Good correlation between reductive dechlorination of TCE and sulfate/methane concentrations
- •EVO distribution not affected by tidal fluctuations (close to Bay)
- •Reductive dechlorination of TCE did not occur until Cr(VI) dropped below 10 mg/L
- •TOC is not the best indicator of EVO distribution in groundwater
- •Minimum longevity of EVO in the saturated zone is at least 3 years, transport of at least 60 feet
- Significant methane concentrations in groundwater
- •EVO can coagulate in injection wells over time, but can be dissolved by adding hot water

QUESTIONS?