State of the Practice of Abiotic and In Situ Biogeochemical Transformation Processes

Eleventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds

Abiotic Processes

- CoC transformation occurs without <u>direct</u> microbial activity
- Can occur naturally, fortuitously, or under engineered conditions
 - Natural attenuation via naturally occurring reactive minerals (eg. magnetite)
 - Fortuitously from approaches that condition the aquifer for another reason or by "accident" (eg, ERD, landfills)
 - Engineered where reagents are added to intentionally promote abiotic degradation (eg. ISBGT)

Engineered Approaches for Abiotic Transformation

- In Situ Chemical Oxidation (ISCO)
 - Chemical oxidants injected/mixed into the contaminated soil/groundwater to effect degradation (eg. permanganate, persulfate)
- In Situ Chemical Reduction (ISCR)
 - Similar to ISCO but with reductants (eg. ZVI, sodium dithionite)
- Numerous vendor products available for these approaches
- ISCO and ISCR are the subjects of other sessions
- Monitored Natural Attenuation (MNA)
 - Rely on naturally occurring processes including reactions with reactive minerals
- In Situ Biogeochemical Transformation (ISBGT)

Review: Fundamental ISBGT Principles

- ISBGT is a 3-step process
 - 1. Under anaerobic conditions microbial activity reduces iron and sulfate
 - 2. Reduced iron and sulfide form reactive minerals
 - 3. Reactive minerals catalyze abiotic contaminant degradation
- ISBGT can occur naturally when conditions are conducive to reactive mineral formation
- Engineered ISBGT provides the necessary substrates to drive the process to completion

Mineral	Formula
Iron sulfide	FeS
Pyrite	FeS_2
Green rusts	$\operatorname{Fe^{II}}_{4}\operatorname{Fe^{III}}_{2}\left(\operatorname{OH}\right)_{12}\operatorname{SO}_{4}$. $\operatorname{yH}_{2}\operatorname{O}$
Magnetite	$\operatorname{Fe_3O_4}$

Biogeochemical Transformation Handbook - 2015

- Navy and AFCEC joint project
- Q&A format
- Provides guidance on biogeochemical transformation
 - Applicable contaminants
 - Implementability
 - Performance monitoring

TECHNICAL REPORT TR-NAVFAC EXWC-EV-1601

BIOGEOCHEMICAL TRANSFORMATION HANDBOOK

This document was a joint effort of NAMEAC and ARCEC

Prepared for NAVFAC EXWC under Contract No. N62583-11-D-0515

October 2015

Distribution Statement A: Approved for public release, distribution is unlimited

Evaluating Site Potential for AbioticDegradation

- Magnetic susceptibility (MS) for magnetite and other magnetic minerals
- SEM-EDS for visualization and elemental analysis
- X-ray Diffraction (XRD) for mackinawite, pyrite, magnetite and green rust
- Dissolved ferrous iron
- Acid volatile sulfides
- Percent clay phyllosilicate clays (vermiculite and biotite)

(Courtesy of U.S. Geological Survey [USGS], 2013)

High-Resolution Magnetic Susceptibility (MS)

- Magnetite may contribute to natural attenuation
- MS is an indirect measure of the magnetite content of soils
- Magnetite is a naturally magnetic material – linear relationship between MS and magnetic materials
- Use in-well sonde to provide near continuous readings over depth

Scanning Electron Microscopy-Energy Dispersive Spectroscopy

- Scanning electron microscopy (SEM) can provide detailed images of mineral structures and locations on surfaces for EDS targeting
- Energy dispersive spectroscopy (EDS) provides surface analysis of the elemental composition of targeted areas within the images
 - Provides weight and atomic percent of elements on surface of mineral

Element	Wt%	At%
C	09.17	21.72
0	13.40	23.83
Na	05.91	07.31
Si	27.91	24.76
Ca	00.86	00.61
Fe	42.75	21.78

X-ray Diffraction

- X-ray Diffraction
 (XRD) can identify
 reactive minerals in
 soil core samples.
- Mackinawite, pyrite, magnetite and green rusts are reactive minerals of interest

Mineral Name	Formula
Aragonite	CaCO ₃
Calcite	CaCO ₃
Goethite	FeOOH
Iron	Fe
Iron (II) Carbonate Hydroxide	Fe ₂ (OH) ₂ CO ₃
Magnetite	Fe ₃ O ₄
Siderite	FeCO ₃
Quartz	SiO ₂

BioPIC Tool evaluates Abiotic Degradation

- <u>Bio</u>remediation <u>P</u>athway
 <u>I</u>dentification <u>C</u>riteria
- Based on the protocol for evaluating natural attenuation of chlorinated ethenes
- Considers biotic AND abiotic processes
- Leverages relationships between biogeochemical parameters and degradation rates to deduce major degradation pathways

To Obtain BioPIC

https://serdp-estcp.org/content/search?cqp=Standard&SearchText=ER201129&x=0&y=0

Or search under ER-201129 Report

Excerpts from BioPIC Tool

BioPIC parameters: VOC concentrations; alternate electron acceptors (e.g., oxygen, sulfate); reduced products (e.g., ferrous iron {Fe[II]}, methane [CH4]); *Dehalococcoides*(Dhc) 16S rRNA gene and reductive dehalogenase (RDase) gene abundances; CSIA and MS

Passive Sampler for Detection of Acetylene

- In-situ passive vapor diffusion (PVD) samplers
- Developed and tested by GSI under SERDP Project ER-1601 for VOCs
- Clemson is testing ability to sample acetylene under SERDP Project ER-2622
- Preliminary results passive sampler better at detecting lower concentrations than traditional dissolved gases method

qPCR Assay for Detecting an Anaerobic Acetylene Degrader - Battelle

- Degradation product of chlorinated solvent abiotic remediation is acetylene
- Acetylene is labile therefore difficult to detect in the field
- Detecting an anaerobic acetylene degrader would provide evidence of the presence of acetylene.
- Detecting Pelobacter acetylenicus anaerobic degrader with limited substrate use at sites provide additional evidence of abiotic degradation

Evaluating Site Potential for Abiotic Degradation – Clemson University

- 14C assay available
- Typically have results in 6 weeks
- Measures decrease in ¹⁴C-TCE activity based on increases in ¹⁴CO₂

SERDP/ESTCP Projects: 2016 SON Measurement and Enhancement of Abiotic Attenuation Processes in Groundwater

Project Number	Title	PI	Affiliation
<u>ER-2617</u>	Measuring and Predicting the Natural and Enhanced Rate and Capacity of Abiotic Reduction of Munition Constituents	Dr. Pei Chiu	University of Delaware
<u>ER-2618</u>	Compound Specific Isotope Analysis of Mineral-Mediated Abiotic Reduction of Nitro Compounds	Dr. William Arnold	University of Minnesota
<u>ER-2619</u>	Characterization of Enhanced Subsurface Abiotic Reactivity with Electrical Resistivity Tomography/Induced Polarization	Dr. Jim Szecsody	Pacific Northwest National Laboratory
<u>ER-2621</u>	Field Assessment of Abiotic Attenuation Rates using Chemical Reactivity Probes and Cryogenic Core Collection	Dr. Richard Johnson	Oregon Health & Science University
<u>ER-2622</u>	Abiotic Transformation of Chloroethenes in Low Permeability Formations	Dr. David Freedman	Clemson University
<u>ER-2623</u>	Identification of Abiotic Degradation Pathways of Chlorinated Ethenes by Compound-Specific Stable Isotope Analysis: A Proof-of-Concept Study	Dr. Tomasz Kuder	University of Oklahoma

Presentations in this Session

- Prospects that Abiotic Degradation of TCE by Naturally Occurring Magnetite Can Be Important for Monitored Natural Attenuation
- Assessment of Biogeochemical Processes to Manage Back Diffusion at a Fractured Sandstone Site
- Practical Applications of Chemical Reactivity Probes (CRPs) to Estimate Abiotic Reduction Rates
- Addition of Divalent Iron to Electron Donor Mixtures for Remediation of Chlorinated Ethenes: A Study of over 100 Wells
- Sulfidation of ZVI for Degradation of Chlorinated Ethenes: A New Approach to In Situ Biogeochemical Transformation
- Posters (Group 1, Session B4, Page 26)
 - 20 posters were presented on Monday evening
 - Topics ranged from new analytical tools, additional contaminants, engineered approaches, and lessons learned

Questions

