

REGENESIS®

Optimizing ZVI Formulations for the Degradation of Chlorinated Hydrocarbons: Effects of Composition and Particle Size

John Freim, Ph.D. (jfreim@regenesis.com) and Katherine Pappano, Ph.D. (kpappano@regenesis.com)

ZVI Assisted Biodegradation:

PCE to Ethene - Simple Equation:

$$C_2Cl_4 + 4H^+ + 8e^- \rightarrow C_2H_4 + 4Cl^-$$

 $PCE \rightarrow TCE \rightarrow c-1,2-DCE \rightarrow VC \rightarrow ethene (Hydrogenolysis)$

But...This pathway involves toxic daughter products

ZVI Facilitates Abiotic Degradation - TCE:

Alpha Elimination - Favorable Avoids recalcitrant daughter products

Hydrogenolysis – Unfavorable Involves recalcitrant daughter products

1,1DCE PCE TCE CDCE VC Ethene

Beta Elimination / Hydrogenation - Favorable

Avoids recalcitrant daughter products

ZVI Facilitates Abiotic Degradation - TCA:

Beta / Alpha - Favorable **Avoids recalcitrant daughter products** Hydrogenolysis / Alpha – Unfavorable Involves recalcitrant daughter products

Ethene 1,1-DCE 1,1,1-TCA 1,1-DCA

Ethane

Alpha- Favorable

Avoids recalcitrant daughter products

Other Reactions:

ZVI with water – Undesirable

 $Fe^{+3} + 3 OH - \rightarrow Fe(OH)_3$ – passivating oxides / oxyhydroxides

ZVI with sulfate - Desirable

Objective:

Engineer ZVI System to Maximize Rates of Reductive Dechlorination

Catalyzed ZVI can promote accelerated reactivity and favorable reaction pathways

Precious metals (e.g. Pd):

- **Very effective** with chlorinated ethenes
- **Expensive**: 0.02% Pd = ~ \$3/lb ZVI
- Subject to **catalyst poisoning** and limited persistence

Base metals (e.g. Cu, Ni):

- **Effective** in laboratory tests
- **Toxicity** concerns
- Subject to catalyst poisoning and limited persistence

Objective:

Engineer ZVI System to Maximize Rates of Reductive Dechlorination

Catalyzed ZVI can promote accelerated reactivity and favorable reaction pathways

Iron Sulfide:

- **Very Effective** in laboratory tests with chlorinated ethenes
- Inhibits reactions with water better reactive capacity & persistence
- Inexpensive
- Resistant to catalyst poisoning
- Limited data on persistence

Experimental Objectives:

- Quantify TCE kinetic enhancement for sulfidated ZVI
- Quantify TCE kinetics for different sizes of sulfidated ZVI
- Explore reactivity enhancements for 1,1,1-TCA

TCE - Experimental Objectives:

TCE: Compare performance of different sulfidated materials

- REGENESIS Aqua ZVI : 2 μm ZVI in water-based carrier w/ sulfide
- REGENESIS Micro ZVI: 2 μm ZVI in glycerol carrier w/ sulfide
- Dry Carbonyl iron: ~4 µm ZVI (with and w/o lab-applied sulfide)
- Dry Microscale iron: Sub-100 μm (with and w/o lab-applied sulfide)
- Iron filings: Sub-350 μm (with and w/o lab-applied sulfide)

TCE - Effect of Sulfidation:

Carbonyl iron: 8x rate enhancement

Bare CIP $K_m = 0.01 (L/g^{-1}/d^{-1})$

CIP:S $K_m = 0.08 (L/g^{-1}/d^{-1})$

Bare Carbonyl / Sulfidated Carbonyl

TCE - Effect of Sulfidation:

Microscale Iron: 2.6x rate enhancement

Bare Microscale $K_m = 0.01 (L/g^{-1}/d^{-1})$

Microscale: S $K_m = 0.026 (L/g^{-1}/d^{-1})$

Bare Microscale / Sulfidated Microscale

TCE - Effect of Particle Size:

Sulfidated species are observed to perform better for TCE degradation – Now lets compare degradation in relation to particle size of lab-sulfidated iron materials

Iron filings: S $K_m = 0.015 (L/g^{-1}/d^{-1})$

Microscale: S $K_m = 0.026 (L/g^{-1}/d^{-1})$

Carbonyl iron $K_m = 0.08 (L/g^{-1}/d^{-1})$

CIP 3x Microscale 1.8x Filings 4 μm sub-100 μm sub-350 μm

TCE - Combining Benefits:

- We see that small particle size ZVI benefits TCE degradation
- Similarly, sulfidation enhances reactivity with TCE while halting competing reactions with water, carbonates, etc.

Engineered products featuring small particle size ZVI with surface preparation and sulfidation done during manufacturing.

TCE Kinetics:

Micro with sulfide – 38x bare Carbonyl iron Aqua with sulfide – 28x bare Carbonyl iron

AquaZVI $K_m = 0.28 (L/g^{-1}/d^{-1})$

MicroZVI:S $K_m = 0.39 (L/g^{-1}/d^{-1})$

Carbonyl $K_m = 0.01 (L/g^{-1}/d^{-1})$

TCA - Experimental Objectives:

TCA: Compare performance of sulfidated material

- REGENESIS Aqua [7VI]: 2 µm ZVI in water-based carrier w/ sulfide
- Dry Carbonyl iron: ~4 µm ZVI bare iron no sulfide

1,1,1-TCA – Kinetics:

Aqua ZVI compared to bare carbonyl iron

Bare Carbonyl Iron

$$K_{\rm m} = 0.54 \, (L/g^{-1}/d^{-1})$$

$$K_m = 0.29 (L/g^{-1}/d^{-1})$$

Bare iron degrades 1,1,1-TCA faster than sulfidated iron – opposite result of TCE

1,1,1-TCA – Degradation Products

1,1,1-TCA – Degradation Pathway

Proposed degradation pathway: Bare iron

1,1,1-TCA to 1,1-DCA

1,1,1-TCA – Degradation Pathway

Proposed degradation pathway: Sulfidated iron

1,1,1-TCA to Ethane

Conclusions

TCE

- Sulfidation of commodity iron produces modest kinetic enhancement: ~
 2-8 times
- Smaller particle size products provide kinetic enhancement up to 6 times
- Engineered ZVI (AquaZVI, MicroZVI) greatly outperforms commodity iron: ~30-40 times kinetic enhancement

• No evidence of altered degradation pathway – primarily beta elimination

Conclusions

1,1,1-TCA

- Parent compound degrades rapidly, bare iron slightly faster than sulfidated iron
- Sulfidated iron beneficially alters degradation pathway using radicals

Questions?

John Freim, Ph.D.

jfreim@regenesis.com

