

EVALUATION OF IRON AND SULFUR SUPPLEMENTS TO PROMOTE REACTIVE MINERAL FORMATION IN IN SITU REACTIVE ZONES

Jeff Ford (Arcadis)

April 11, 2018

Overview

- Reactive Mineral Background
- Iron Supplement Pilot Study
- Sulfur Supplement Pilot Study
- Lessons Learned

What are reactive minerals?

- Iron containing minerals
- Form under iron-reducing and sulfate-reducing conditions
- Promote alternative degradation pathway for chlorinated solvents
- Active at low concentrations (<0.5%; He et al. 2015)

He, Y.T, J.T. Wilson, and R.T. Wilkin. 2015. Review of abiotic degradation of chlorinated solvents by reactive iron minerals in aquifers. Groundwater Monitoring & Remediation. 35 (3/Summer 2015): 57-75.

Abiotic Degradation

- Dechlorination takes place on reactive mineral surface
 - Rate

 exposed surface area
- No observable intermediates
- Signs of abiotic degradation
 - Decreases in parent compound
 - No formation of daughter products
 - Observable concentrations of end products

Types of Reactive Minerals

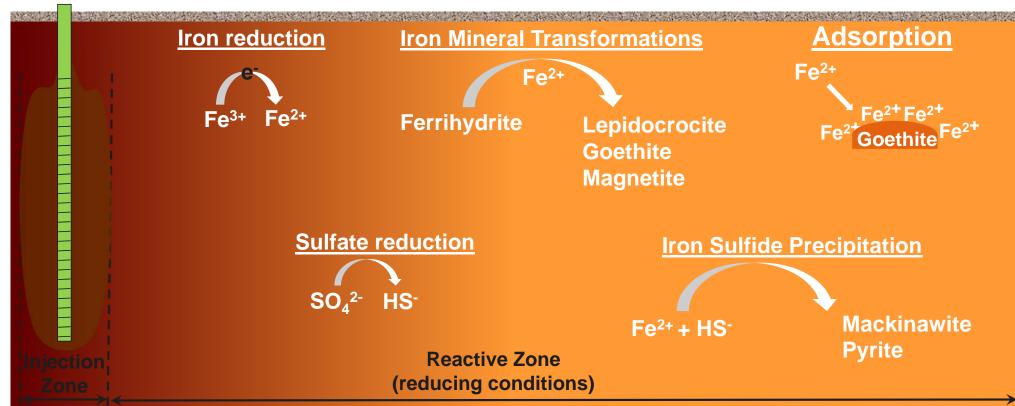
Iron Sulfides

- Mackinawite
- Pyrite

Iron oxides, hydroxides, and oxyhydroxides

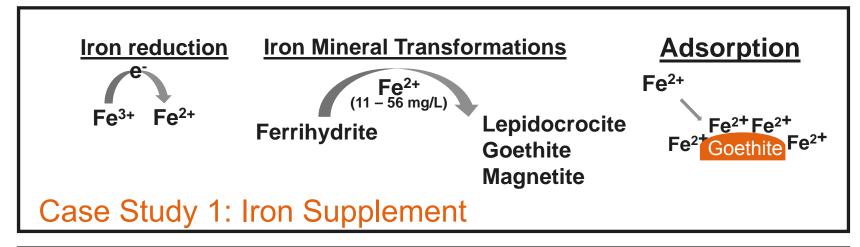
- Goethite
- Lepidocrocite

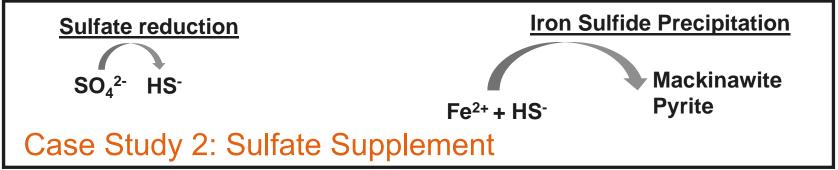
Mixed Valence


- Magnetite
- Green rust

Reactive Mineral Formation in Reactive Zones

Carbon





Reactive Mineral Engineering

Case Study 1: Iron Supplement

Case Study 1: Fe²⁺ Supplement

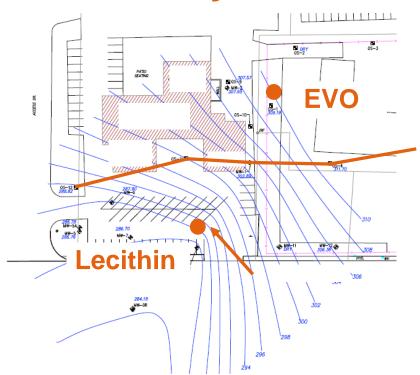
- Client wanted to promote abiotic treatment
- Pilot study comparing two reagents with same carbon loading
 - 3% EVO
 - Lecithin with ferrous iron supplement
- Objective: evaluate reagents for abiotic treatment

$$H_3C$$
 H_3C
 H_3C

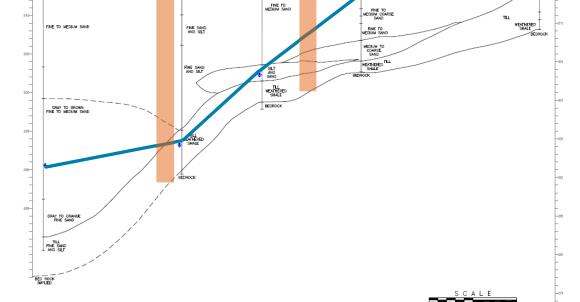
Case Study 1: Background

ARCADIS Design & Consultancy for natural and built assets

- Located in the Northeast
- Cold weather application
- PCE plume (20 to 500 μg/L)
- Lithology
 - Sand and silt
 - Glacial till (silt/gravel/clay)
 - Bedrock (shale and siltstone)



Case Study 1: Potentiometric Map


WELL TO POORLY GRADED SANDS FINE TO MEDIUM SAY

FINE TO MEDIUM SAND

Lecithin selected for high flow rates/weathered rock application

Remediation of Chlorinated and Recalcitrant Compounds

EVO

Lecithin

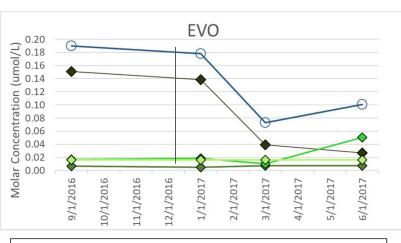
Case Study 1: Injection Summary

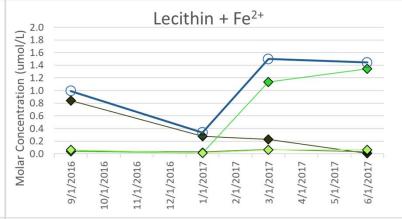
	EVO	Lecithin + Fe ²⁺
Injection Volume (gal)	1930	2700
TOC* (mg/L)	7800	7800
Iron (mg/L)	1.19	269

*Theoretical

EVO Injection Area

Lecithin Injection Area





Case 1: Remediation Performance

- ◆ PCE
- ◆ TCE
- cisDCE
- VC
- O Total Molarity

EVO

Consistent with abiotic degradation

- Decrease in PCE
- Limited increase in daughter products
- Max Fe (80.6 mg/L)
- Max methane (0.14 mg/L)

Lecithin + Fe²⁺

Methane (ug/L)

- Consistent with biological degradation
 - Conversion to cisDCE
 - Max Fe (41.7 mg/L)
 - Max methane (5.4 mg/L)

Total Iron

TOC

Methane

eteventh international Conference on

Remediation of Chlorinated and Recalcitrant Compounds

13

Case Study 1 Interpretation

- Ferrihydrite transforms to:
 - Lepidocrocite (11 mg/L Fe²⁺)
 - Goethite (56 mg/L Fe²⁺)
 - Magnetite (56+ mg/L Fe²⁺)
 - Sources: Pedersen et al. 2005, Tamaura et al. 1983
- Goethite and lepidocrocite not reactive with PCE
 - Reactive with CT when activated with adsorbed Fe²⁺
- Magnetite reactive with PCE
 - Requires higher Fe²⁺ concentrations
 - Possible treatment mechanism

Pedersen *et al.* 2005. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica. 69 (16): 3967-3977.

Tamaura et al. 1983. Transformation of γ -FeO(OH) to Fe3O4 by adsorption of iron (II) on γ -FeO(OH). J. Chem. Soc. 1983: 189-194.

Eleventh International Conference on _____

Case 1 Conclusions

- Abiotic degradation possible without iron addition
- Fe²⁺ concentration achieved in situ directly impacts minerology
- Important to determine whether an iron supplement is needed
 - Additional cost and time

Case Study 2: Sulfate Supplement

Case Study 2: Overview

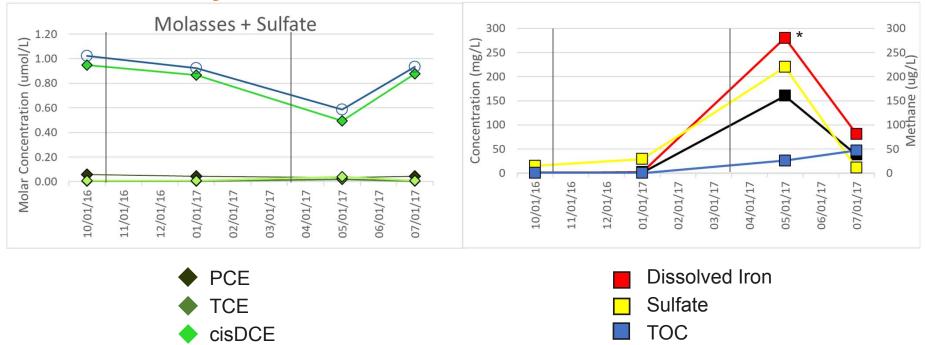
- Client wanted to promote biological and abiotic treatment of PCE plume
- Pilot study comparing two reagents
 - Molasses (not discussed)
 - Molasses + Sulfate Supplement
- Objectives:
 - Evaluate iron sulfide formation and abiotic degradation
 - Limit offsite migration

Case Study 2 Background

- Located in the Southeast
- Dilute PCE plume
 - PCE (8-10 μg/L)
 - cisDCE (92-97 μg/L)
- Lithology
 - Depositional
 - Sands
 - Silty sands
 - Silty clays

Case Study 2: Reagent

Reagent	Carbon + Sulfate	
Molasses Strength	1%	
Sulfate Loading	4.8 g/L MgSO ₄ •7H ₂ O	
NaOH	10 SU	
Injection Volume	3275 gal	
Resulting TOC	3,400 - 3,800 mg/L	
Resulting Sulfate	2,300 - 3,800 mg/L	



Case Study 2: Results

VC

Total Molarity

Limited Treatment Observed

Eleventh International Conference on _____ Remediation of Chlorinated and Recalcitrant Compounds

Methane

*Total Iron

Case Study 2: Precipitate Formation

Case Study 2: SEM-EDS

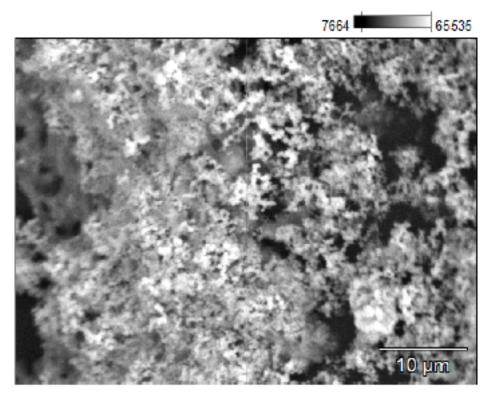
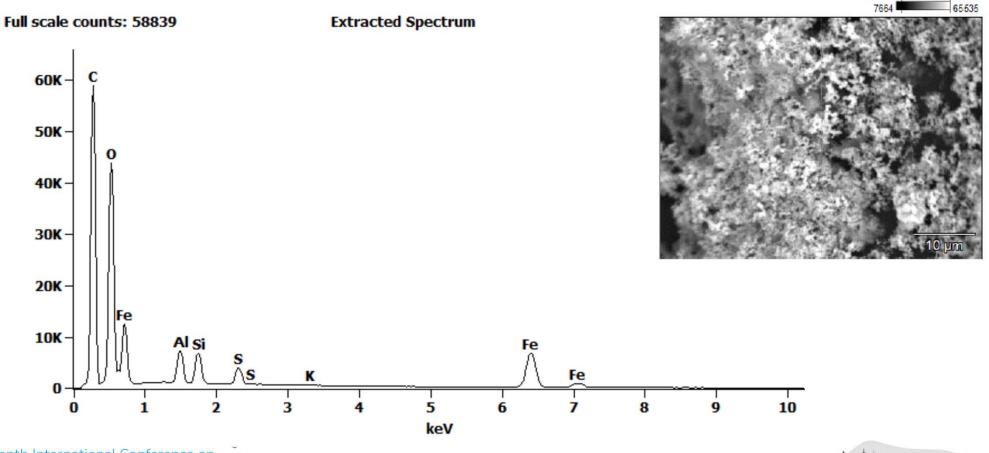
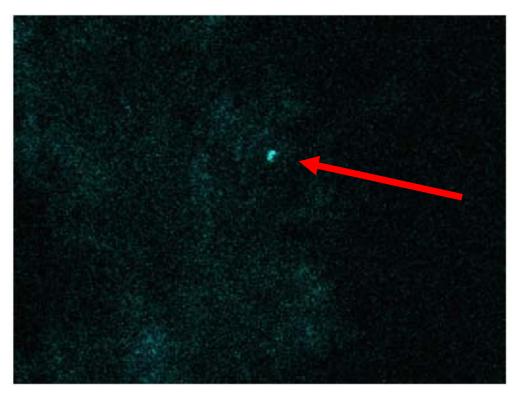


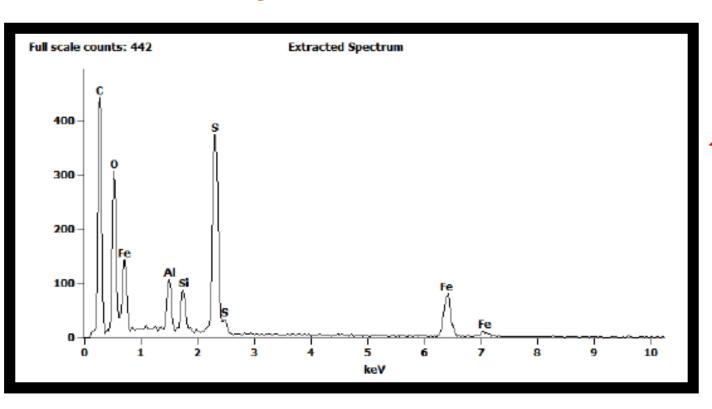
Figure 1. SEM image (above) and EDS spectrum (below) obtained from a portion of the material on the ID of sample MW-27B.

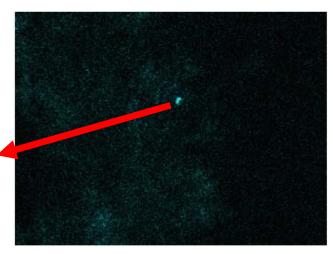


Case Study 2: SEM-EDS



Case Study 2: SEM-EDS




Sulfur Distribution Map

Case Study 2: Sulfur Addition

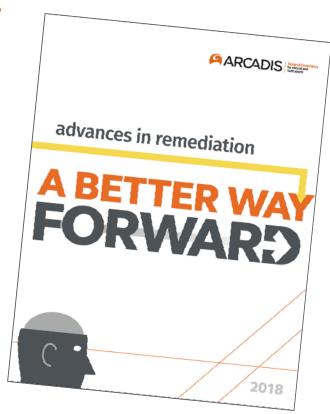
Sulfur Distribution Map

Iron sulfide precipitate identified by SEM-EDS

EDS Spectrum from sulfur-rich area

Case Study 2 Conclusions

- Iron sulfides formed in situ
- No strong evidence of abiotic degradation
- Biofilm may be inhibiting adsorption of CVOCs onto mineral surface



Download your free copy of our new *Advances in Remediation e-*book!

Revised, refreshed and full of cutting-edge technologies — our newest *Advances in Remediation* e-book features eight articles highlighting new insights from our scientists and engineers who are rethinking the future of site evaluation and remediation. Discover the latest innovations and advancements that could reshape how you approach your remediation projects.

Stop by booth **#610** for your complimentary copy, or visit www.arcadis.com/Remediation2018!

Your Presenter

JEFF FORD

Staff Environmental Engineer, EIT

0 919.415.2273

e jeff.ford@arcadis.com

Acknowledgements

Arcadis
Jeff McDonough
Jennifer Martin Tilton
David Liles
Shannon Ulrich
Ryan Oesterreich
Matt McCaughey

Iron Shifting

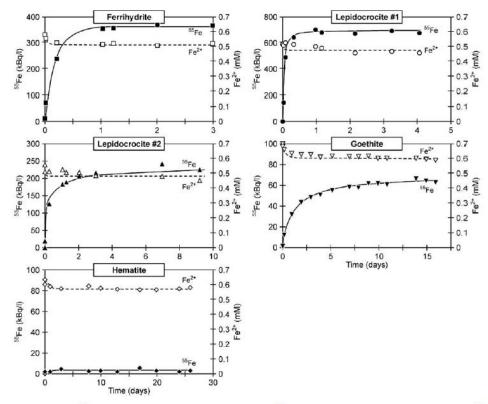


Fig. 4. Aqueous Fe^{2+} concentration (open symbols) and release of ^{55}Fe (filled symbols) from ferrihydrite (860 kBq $^{55}Fe/L$ added), lepidocrocite #1 (2400 kBq $^{55}Fe/L$ added) and #2 (1400 kBq $^{55}Fe/L$ added), goethite (1270 kBq $^{55}Fe/L$ added), and hematite (860 kBq $^{55}Fe/L$ added). Initial solutions contained 0.6 mM Fe^{2+} . Lines are provided for visual aid.

Pedersen *et al.* 2005. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica. 69 (16): 3967-3977.

Ferrous Iron Release from Ferrihydrite

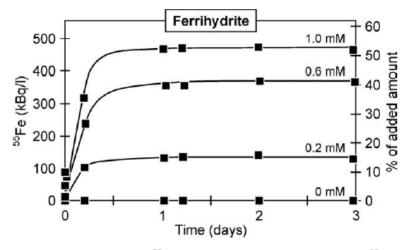


Fig. 3. The release of 55 Fe into solution in experiments with 55 Fe-labelled ferrihydrite dispersed in solutions containing 0, 0.2, 0.6, and 1.0 mM Fe $^{2+}$. Lines are provided for visual aid.

Pedersen *et al.* 2005. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochimica et Cosmochimica. 69 (16): 3967-3977.

