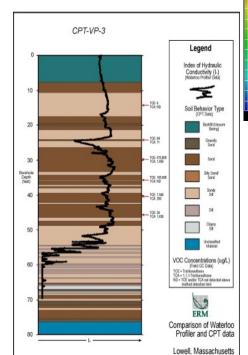
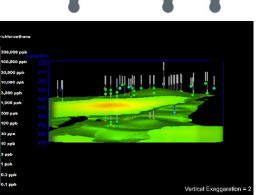

In-Situ Chemical Oxidation

Lessons Learned at Multiple Sites James Baldock, Kevin Morris, Tim Pac, Jaydeep Parikh, Paulo Santos and Jaydeep Sathaye

© Copyright 2018 by ERM Worldwide Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

ERM





Introduction

State of the Practice

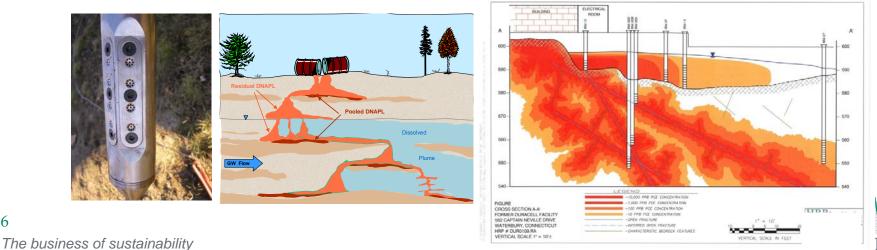
- Sites are increasingly complex
- Rapidly changing characterization tools
- Improved ISCO understanding
- Overpromised unrealistic expectations
 - Multiple incidences of technology failures
 - No technology works everywhere

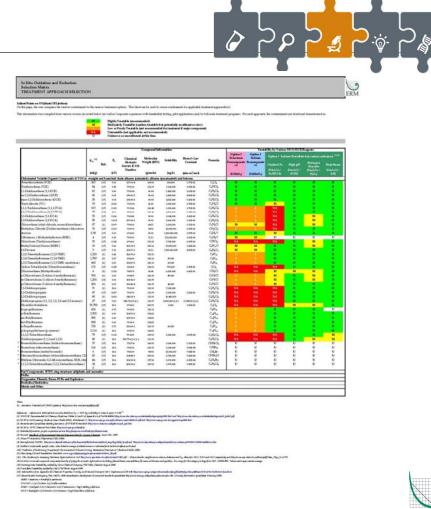
3

Market Observations

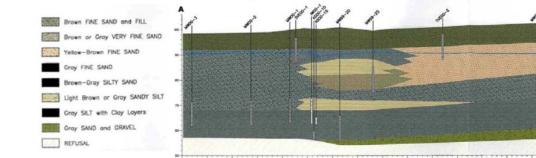
- 1. Combining technologies
 - Maintaining sweet spot vs. resistance to change
- 2. Increased pressures for project execution
 - Site "needs," "wants" and cost balancing
- 3. Overselling capabilities
 - Unique and complex sites
 - Surprises are the norm

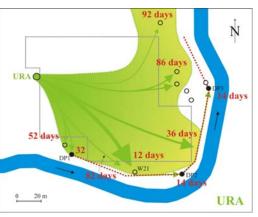
- 1. Visualization/conceptual models (CSM)
- 2. Design
- 3. Underutilization of existing data
- 4. Implementation
- 5. Post injection monitoring
- 6. Skilled personnel





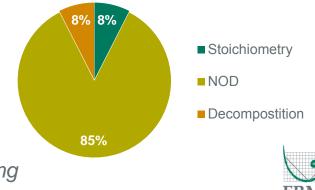
- 1. Visualization/Conceptual Models
- Increased toolbox to characterize Sites holistically
 - Tool box capabilities and interpretation in real time
 - Heterogeneity is the norm not the exception (variability on all scales)
 - Representativeness?



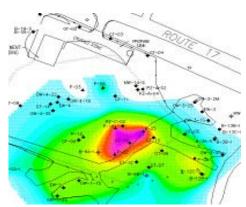


- 2. Design
 - A. Oversimplification
 - B. Amendment and Dose
 - C. Pore volume
 - D. Flexibility

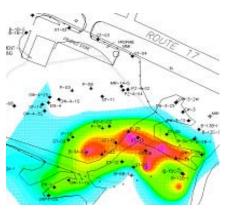
- 2. Design (*continued*)
 - A. Oversimplification
 - Simplification is required to conceptualize difficult or incompletely understood systems; simplification however results in,
 - Elimination of accuracy
 - Incomplete understanding of source to terminus
 - Overreliance on existing data



ان کے مرح م


The business of sustainability

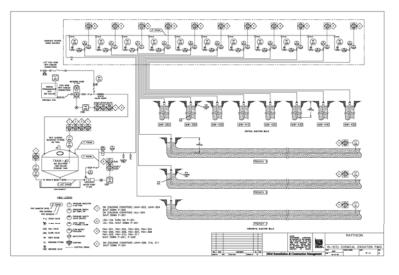
- 2. Design (*continued*)
 - B. Amendment and dose no ISCO silver bullet chemical
 - Under dosing failure to account for all demands
 - SOD/TOD
 - Decomposition losses
 - Unintended or unknown reactions, other unknown compounds
 - Overdosing more than necessary
 - Cost and time
 - Oxidant persistence
 - Improper dosing
- 9 Wrong amendment No ISCO agent treats everything The business of sustainability



- 2. Design (continued)
 - B. Amendment and dose no ISCO silver bullet chemical (continued)
 - Improper dosing
 - Wrong amendment No ISCO agent treats everything (DCA)

Chemical Oxidation

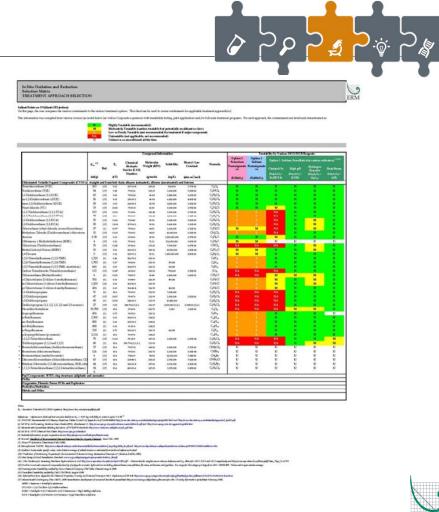
- 2. Design (*continued*)
 - C. Pore volume injection volume relative to pore volume (PV)
 - Volume = f (amendment, concentration, time, cost)
 - Injectate volume vs PV varies widely by program:
 < 0.1X to > 5X
 - Volume of amendment (saturation versus surgical):
 - Too much– long duration, high cost, breakout, water table rise, Site disturbance
 - Too little— stripping in advective zones only, variable performance, rebound

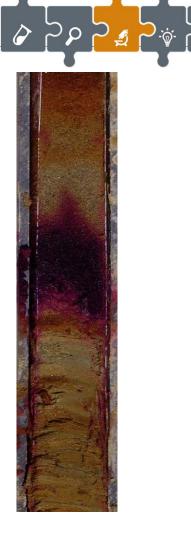


The business of sustainability

- 2. Design (*continued*)
 - D. Flexibility
 - Incorporate flexibility into design static designs difficult to change
 - Restrictive operational criteria drinking water closure goal, uptime
 - Differing Site conditions

- 3. Underutilization of existing data
 - Simple tests can yield valuable information *water infiltration, grain size, air permeability*
 - Available information *utility plans / subsurface clearance / as-built's*
 - Observational data *drill logs, historical records, Site knowledge*
 - Soil/cutting examination and logging discontinuities, breaks, voids





- 4. Implementation
 - A. Delivery and Distribution
 - B. Hydraulics
 - C. Pressure

- 4. Implementation (*continued*)
 - A. Delivery and Distribution
 - Mass focused treatment is the norm
 - Uneven or incomplete amendment placement
 - Difficult geologies
 - Use of improperly designed wells

- 4. Implementation (*continued*)
 - B. Hydraulics
 - Inhomogeneity is the norm radial flow does not occur, is the distribution being measured and confirmed?
 - Presence of oxidant does not mean that no contaminants are present
 - Injectate properties
 - Density injectate specific gravity
 - Viscosity injectate viscosity

The business of sustainability

4. Implementation (*continued*)

- C. Pressure Injectate preferentially follows higher conductive zones "the water doesn't care"
- Overpressure fractures start up pressures, over pressurization
- Friction loss and breakout vertical fracture
- Risk and impact of spill increases exponentially with increasing

pressure

17

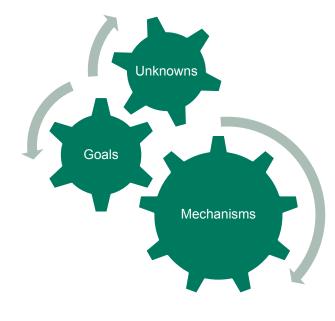
- 5. Post injection monitoring
- Verification QA to evaluate performance vs. objectives
- Quantification vs. Speculation
 - Distribution versus plan and versus target mass
 - Persistence activity, longevity
 - Performance target declines
- Presence of oxidant does not mean there are no detectable contaminants

ction

مح **م**

Fact

18

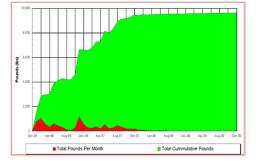

- 6. Skilled personnel "been there, done that"
- Operational knowledge of project and process
- Expectations for chemical behavior and markers for outliers
- Response action and tools
- Knowledgeable and experienced field teams
- Contingency and communication plans in place
- Total team approach to execution

- 1. Recognition of multiple mechanisms of treatment
- 2. Imposition of impractical closure goals
- 3. Site Unknowns

 ∂

- الله ج م م م الله ج م م م م
- 1. Recognition of multiple mechanisms of treatment
- Technology coupling ISCO/bio, thermal/bio, hi/low temperature thermal
- Multi component amendments persulfate/permanganate
- Effect of natural or added surfactants
- Quantification of contributions
 - Which technology does the "work"
 - Quantification?

The business of sustainability

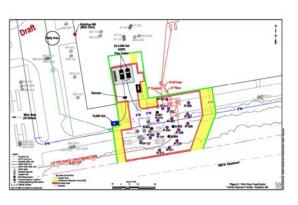


- 2. Imposition of impractical closure goals
- Typically non-degradation standards
- Closure defined as drinking water standards vs. RIBC's
- Closure defined at specific compliance point(s) e.g., property boundary
- Flux based remediation focus on mobile materials, just because mass is there does not mean it has to be treated

- 3. Project unknowns
- Project re-openers
 - New and emerging contaminants 1,4-D, PFAS/PFOA, ED's, next?
 - Decreased closure goals TCE, VI issues
- What is "clean enough" impact of risk assessment
- Flexibility in Plans elimination of static approvals
- Use of mass based approaches
- Revisit of "pay for performance" and "guaranteed outcomes"?

The business of sustainability

- 1. Setting reasonably attainable expectations
- 2. Incorporation of mass balance approach
- 3. Team-vested approach for remediation



<u>ن</u>ہ ج م ح ک

- 1. Setting reasonably attainable expectations
- Time, cost and performance
- Coupling of characterization and delivery
- Recognition of oxidant persistence proper SOPs
- Plan for remediation
 - Tasks
 - Expectations
 - Measurement

ا م م

1. Setting reasonably attainable expectations (continued)

- Recognition of alternative remedial approaches
 - Fixed vertical, inclined, horizontal wells, trenches
 - Temporary direct targeted injection, fracturing
 - Automation "continuous" low flow processes
 - Recirculation "closed loop" horizontal or vertical
 - Soil mixing
 - Slow-release options

26 The business of sustainability

27

The business

- 2. Incorporation of mass balance approach
- Pre-remedial conditions accurate baseline understanding
- Recognition (and measurement of) multiple means of treatment
- Use the best of each method technology coupling

	Physical +]
	Chemical +	
	Biological +	
of sustainability	Removal	

- 3. Team-vested approach for remediation
- Clients corporate, regional, local, plant
- Consultant(s) and engineer(s)
 - Management
 - Field team
 - Contractors
- Site owner/operator
- Regulators

28

The business of sustainability

Contact Info

ERM

James Baldock *Technical Director*

James.Baldock@ERM.com

Kevin Morris *Technical Director* ERM Kevin.Morris@ERM.com

Tim Pac *Technical Director* ERM Tim.Pac@ERM.com

Conference on Remediation of Chlorinated and Recalcitrant Compounds

April 8-12, 2018 | Palm Springs, CA

32 The business of sustainability

Jaydeep Parikh *Partner* ERM Jaydeep.Parikh@ERM.com

Paulo Santos *Partner* ERM Paulo.Santos@ERM.com

Jaydeep Sathaye *Partner* ERM Jaydeep.Saythaye@ERM.com

www.erm.com

The business of sustainability