

How Much Buffer Do You Need to Adjust Aquifer pH?

A Design Tool to Estimate Amount of Buffer Required

Bilgen Yuncu, PhD, PE and Robert C Borden, PE, PhD
Draper Aden Associates

Michael A Singletary, PE NAVFAC SE

Eleventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds,
Palm Springs, California - April 8-12, 2018

Overview

- Importance of pH
- Factors Affecting Aquifer Acidity
- Aquifer Buffering Capacity
- Common Additives to Adjust pH
- Alkali Addition Design Tool
- Example

Importance of pH for ERD

Dechlorination rates are highest at circumneutral pH

Lacroix et al., Appl. Environ. Micro, July 2014

Factors Affecting Aquifer pH

Prevailing Site Conditions

Industrial Site in Eastern North Carolina with sulfuric acid plume

(http://www.bonap.org/2008_Soil/pH20110321.png)

Factors Affecting Aquifer pH

Acidity from Fermentation of Substrate

```
Sodium Lactate (NaC<sub>3</sub>H<sub>5</sub>O<sub>3</sub>)
NaC<sub>3</sub>H<sub>5</sub>O<sub>3</sub> + 6H<sub>2</sub>O \rightarrow
6H<sub>2</sub> + 3HCO<sub>3</sub><sup>-</sup> + Na<sup>+</sup> + 2H<sup>+</sup>
```

Soybean Oil ($C_{56}H_{100}O_6$) $C_{56}H_{100}O_6 + 162H_2O \rightarrow$ 156H₂ + 56HCO₃⁻ + 56H⁺

Acidity from Reductive Dechlorination

$$C_2Cl_4$$
 (PCE) + $4H_2 \rightarrow C_2H_4$ (ethene) + $4HCl$

Factors Affecting Aquifer Acidity

Reaction

Electron Acceptor Reduction

- Nitrate-Reduction $NO_3^- + 2\frac{1}{2}H_2 \rightarrow 2H_2O + \frac{1}{2}N_2 + OH^-$
- Iron-Reduction Fe(OH)₃ + $\frac{1}{2}$ H₂ \rightarrow Fe²⁺ + H₂O + 2 OH⁻
- Sulfate-Reduction
 SO₄²⁻ + 4 H₂ + Fe²⁺ → Fe²⁺ + H₂S + 2 H₂O + 2 OH⁻ → FeS₂ + 4 H₂O
- Methanogenesis $HCO_3^- + 4 H_2 \rightarrow CH_4 + 2 H_2O + OH^-$

Contaminated Zone

Maganese-Reduction

Aerobic Respiration

Ground Surface

Water Table

Groundwater Flow

Buffering by Carbonates

$$CO_2(g) + H_2O \Leftrightarrow H_2CO_3^* \Leftrightarrow H^+ + HCO_3^- \Leftrightarrow 2 H^+ + CO_3^{2-}$$

- Near the water table, CO₂ degas, stripping acid
- Open system, buffering capacity: a function of PCO2
- Closed system, buffering capacity: a function of total dissolved carbonate (assuming no minerals)

Buffering by Carbonates

- Solid carbonate minerals: CaCO₃(s), MgCO₃(s)
- Limit pH declines caused by strong acids (e.g. HCI)
- Relatively low solubility so less effective in limiting pH declines due to CO₂ production in saturated zone
- $H_2CO_3^* + Ca_2^+ + CO_3^{2-} \rightarrow 2H^+ + Ca^{2+} + 2CO_3^{2-} \rightarrow H^+ + HCO_3^- + CaCO_3(s)$ (precipitation with accumulation of H⁺)

Surface Complexation and Ion Exchange

- H⁺ and OH⁻ exchange on Fe and Al oxide surfaces and clay minerals
- Strong buffer, reduce the pH decline → adsorbing H⁺
- Increase required base amount to increase aquifer pH → adsorbing OH⁻

Estimating Aquifer Buffering Capacity

- Titrations with strong base
- Buffering curves are typically linear in the pH range of 4.5 to 6.5
- Inverse slope: pH buffer capacity (pHBC)=meq OH⁻ sorbed/pH unit

den Associates

veying Environmental Services

Estimating Aquifer Buffering Capacity

- 6 contaminated aquifers
- Vary by a factor of 10 between sites
- Increases with silt/clay

Acid and Base Production

- pH < 8 (CO_3^{2-} insiginificant)
- $a = (1 + 10^{-6.352} / [H+])^{-1} (5 > pH > 8)$
- H+release: $H_2CO_3^* \rightarrow aH_2CO_3^* + (1-a)H^+ + (1-a)HCO_3^-$
- H⁺ consumed : NaHCO₃ + aH⁺ \rightarrow Na⁺ + aH₂CO₃* + (1-a)HCO₃⁻ Na₂CO₃ + (1+a)H⁺ \rightarrow 2Na⁺ + aH₂CO₃* + (1-a)HCO₃⁻

Net Acid Production

e- Acceptor	e- Donor	Product	Reaction	H ⁺ Produced
PCE	H_2	TCE	$C_2Cl_4 + H_2 \rightarrow C_2H_3Cl_3 + H^+ + Cl^-$	1
TCE	H_2	<i>c</i> DCE	$C_2HCl_3 + H_2 \rightarrow C_2H_2Cl_2 + H^+ + Cl^-$	1
DCE	H_2	VC	$C_2H_2CI_2 + H_2 \rightarrow C_2H_3CI + H^+ + CI^-$	1
VC	H_2	Ethene	$C_2H_3CI + H_2 \rightarrow C_2H_4 + H^+ + CI^-$	1
H ₂ O	Acetic Acid	H ₂ , HCO ₃ -	$C_2H_4O_2 + 4H_2O \rightarrow 2H_2CO_3^* + 4H_2$	2(1-a)
H ₂ O	Lactic Acid	H ₂ , HCO ₃ -	$C_3H_6O_3 + 3 H_2O \rightarrow 3 H_2CO_3^* + 6 H_2$	3(1-a)
H ₂ O	Glucose	H ₂ , HCO ₃ -	$C_6H_{12}O_6 + 12 H_2O \rightarrow 6 H_2CO_3* + 12 H_2$	6(1-a)
H ₂ O	Soybean Oil	H ₂ , HCO ₃ -	$C_{56}H_{100}O_6 + 162H_2O \rightarrow 56H_2CO_3^* + 156H_2$	56(1-a)
Oxygen	H_2		$O_2 + 2 H_2 \rightarrow 2 H_2 O$	0
Nitrate	H_2	N_2	$NO_3^- + 2\frac{1}{2} H_2 \rightarrow 2 H_2O + \frac{1}{2} N_2 + OH^-$	-1
Goethite	H_2	Fe ²⁺	FeO(OH) + $\frac{1}{2}$ H ₂ \rightarrow Fe ²⁺ + 2 OH ⁻	-2
Sulfate	H_2	HS-	$SO_4^{2-} + 4 H_2 + Fe^{2+} \rightarrow FeS + 4 H_2O$	0
H ₂ CO ₃ *	H ₂	CH ₄	$H_2CO_3^* + 4 H_2 \rightarrow CH_4 + 2 H_2O$	(a-1)

Common Alkalis

Base	Formula	MW (g/mole)	OH ⁻ per mole	OH ⁻ per Kg	Solubility (g/L)	Saturated solution pH
Caustic Soda	NaOH	40.0	1	25.0	1,100	>14
Caustic Potash	КОН	56.1	1	17.8	1,200	>14
Soda Ash	Na ₂ CO ₃	106	1+ a	11.2	300	~11.7
Baking Soda	NaHCO ₃	84	а	2.2	78	~8.3
Hydrated Lime	Ca(OH) ₂	74.1	2	27.0	1.85	~12.4
Milk of Magnesia	Mg(OH) ₂	58.3	2	34.3	<0.01	~10.3

Alkali Addition Design Tool

- Spreadsheet based design tool developed to estimate base addition required to maintain target pH during ERD
- Inputs
 - Treatment zone dimensions, design period
 - Site characteristics (K, porosity, dh/dL)
 - Geochemistry (Background pH, pHBC)
 - Contaminant concentrations and electron acceptors
 - Substrates added
 - Target pH
- Results
 - OH- required to neutralize H+ produced and raise pH
 - Amount of different reagents required

Operational Unit 2 (OU2)

- Former Naval Training Center (NTC), Orlando, FL
- Former landfill with GW flow to GOAA canal / drainage ditch
- TCE and related CVOCs
- Low pH

2008

- 150 ft barrier (central portion)
- 11 Inject well pairs (15-25 ft and 25-35 ft)
- Two rows, 30 ft OC
- EVO injections

2012

- Reinject central area
- Extend barrier 135 ft north and
 135 ft south in 25-35 ft zone
- EVO and buffer (Mg(OH)₂) injections

Operational Unit 2 (OU2)

- 5 year design life
- Background pH = 5.0
- pHBC = 8 meq OH-/Kg/pH
- Vegetable oil added = 20,224 lb
- Buffer added = 240 lb

Site Information

Facility Name:	Former NTC Orlando
Site Name:	OU2
Owner:	US NAVY

Aquifer Characteristics fine sand and fine silty sand Description: Hydraulic Gradient: 0.002 m/m ft/ft Hydraulic Conductivity: 7.62 m/d 25 ft/d 2.50 Sediment Specific Gravity: g/cm³ 0.28 mL/cm^3 Porosity: 0.20 mL/cm³ Effective Porosity g/cm³ lb/ft³ Bulk Density: 2 112 Transport Velocity: m/yr 91 ft/yr 28

> alpha 0.184 0.957

Geochemistry		
Target pH:	7.0	SU
Background pH:	5.0	SU
Total Inorganic Carbon:	12	mg/L
Background CO2 Acidity:	0.8	meq/L
Background CO2 Alkalinity:	0.0	meq/L
Mineral Acidity:	0	meq/L
Total GW Acidity	1	meq/L
Aquifer Buffering Capac.:	8.00	meq/Kg/pH
Base to raise starting pH	114,556	OH eq

Average GW and Soil Concentrations

The tage of and son contect			
	GW	Soil	GW+Soil
	(mg/L)	(mg/Kg)	(Kg)
PCE	0	0	0
TCE	5	0	61
DCE	0	0	0
VC	0	0	0
Oxygen	0	NA	0
Nitrate	0	NA	0
Fe(II)	2	100	740
Sulfate	15	NA	183
Methane	549	NA	6,684

Bioremediation Info.

Treatment Zone Dimensions			_		
Design Period:	5	yr			
Width:	133	m	435	ft](
Length:	10	m	33	ft](
Vertical Thickness:	3	m	10	ft](
Volume:	3,978	m ³	140,469	ft ³	l
Soil Mass:	7,159,752	Kg	15,751,430	lb	
Pore Volume:	1,113,739	L	294,220	gal	
GW Flux:	2,212,602	L/yr	584,509	gal/yr	
Total GW Vol:	12,176,749	L	3,216,767	gal	
HRT:	1	yr			

(perpendicular to GW flow) (parrallel to GW flow) (depth)

(treated soil mass)
(Treatment zone PV)
(GW entering per year)
(Total GW vol. treated over)

Reagents Added				
Acetic Acid		lb	0	Kg
Lactic Acid	1,078	lb	490	Kg
Glucose		lb	0	Kg
Soybean Oil	20,224	lb	9,193	Kg
Caustic Soda		lb	0	Kg
Caustic Potash		lb	0	Kg
Soda Ash		lb	0	Kg
Baking Soda		lb	0	Kg
Hydrated Lime		lb	0	Kg
Milk of Magnesia	240	lb	109	Kg

Influent Acidity	9,423	OH eq
Base to raise starting pH	114,556	OH eq
Acidity from Dechlorination	1,390	OH eq
Acidity from Added Substrate	496,733	OH eq
Acidity from e ⁻ accept / donors	-366,647	OH eq

Total Base Required	255,455	OH ⁻ eq
Total Base Added	3,742	OH eq
Fraction of Base Demand Satisfied	1%	

Site Information Facility Name: Former NTC Orlando OU2 Site Name: US NAVY Owner: Aquifer Characteristics fine sand and fine silty sand Description: Hydraulic Gradient: 0.002 m/m 7.62 Hydraulic Conductivity: m/d 25 2.50 g/cm³ Sediment Specific Gravity: 0.28 mL/cm³ Porosity: mL/cm³ Effective Porosity 0.20 g/cm³ Bulk Density: 112 alpha Geochemistry 7.0 SU 0.184 Target pH: Background pH: 5.0 SU 0.957 Total Inorganic Carbon: 12 mg/L Background CO2 Acidity: 0.8 meq/L Background CO2 Alkalinity: 0.0 meq/L Mineral Acidity: ol meq/L Total GW Acidity 1 meq/L A --- :: E -- D-- : E -- - : - - O-----Average GW and Soil Concentrations GW+Soil Soil GW (mg/L) (mg/Kg) (Kg) PCE 0 TCE 61 DCE 0

VC

Oxygen

Nitrate

Sulfate

Methane

Fe(II)

Bioremediation Info.

Treatment Zone D	imensions		_		
Design Period:	5	yr			
Width:	133	m	435	ft	(perpendicular to GW flow)
Length:	10	m	33	ft	(parrallel to GW flow)
Vertical Thickness	3	m	10	ft	(depth)
Volume:	3,978	m ³	140, 469	ft ³	
Soil Mass:	7,159,752	Kg	15,751,430	lb	(treated soil mass)
Pore Volume:	1,113,739	L	294, 220	gal	(Treatment zone PV)
GW Flux:	2,212,602	L/yr	584,509	gal/yr	(GW entering per year)
Total GW Vol:	12,176,749	L	3,216,767	gal	(Total GW vol. treated over
HRT:	1	yr]

Reagents Added				
Acetic Acid		lb	0	Kg
Lactic Acid	1,078	lb	490	Kg
Glucose		lb	0	Kg
Soybean Oil	20,224	lb	9, 193	Kg
Caustic Soda		lb	0	Kg
Caustic Potash		lb	0	Kg
Soda Ash		lb	0	Kg
Baking Soda		lb	0	Kg
Hydrated Lime		lb	0	Kg
Milk of Magnesia	240	lb	109	Kg .
Base to raise startin	g pH		114,556	OH eq
Acidity from Dechlo	rination		1,390	OH eq
Acidity from Added	Substrate		496,733	OH eq
_				

Total Base Required		255, 455	OH eq
Total Base Added		3,742	OH eq
Fraction of Base Dem	and Satisfied	1%	

-366,647

OH eq

Acidity from e accept / donors

0

0

740

183

6,684

ol

0

15

549

NA

NA

NA

NA

100

Site Information

Facility Name:	Former NTC Orlando	
Site Name:	OU2	
Owner:	US NAVY	

Aquifer Characteristics				
Description:	fine sand and fine silty sand			
Hydraulic Gradient:	0.002	m/m	0	ft/ft
Hydraulic Conductivity:	7.62	m/d	25	ft/d
Sediment Specific Gravity:	2.50	g/cm ³		
Porosity:	0.28	mL/cm ³		
Effective Porosity	0.20	mL/cm ³		
Bulk Density:	2	g/cm ³	112	lb/ft ³
Transport Velocity:	28	m/yr	91	ft/yr

alpha 0.416 0.957

6.5	SU
<u>5</u> .	SU
12	mg/L
0.5	meq/L
0.0	meq/L
0	meq/L
1	meq/L
8.00	meq/Kg/pH
85,917	OH ⁻ eq
	5.0 12 0.5 0.0 0 1 8.00

Average GW and Soil Concentrations

Average GW and 3011 Concer			
	GW	Soil	GW+Soil
	(mg/L)	(mg/Kg)	(Kg)
PCE	0	0	0
TCE	5	0	61
DCE	0	0	0
VC	0	0	0
Oxygen	0	NA	0
Nitrate	0	NA	0
Fe(II)	2	100	740
Sulfate	15	NA	183
Methane	549	NA	6,684

Bioremediation Info.

Milk of Magnesia

Treatment Zone Dim	ensions			
Design Period:	5	yr		
Width:	133	m	435	ft
Length:	10	m	33	ft
Vertical Thickness:	3	m	10	ft
Volume:	3,978	m ³	140,469	ft ³
Soil Mass:	7,159,752	Kg	15,751,430	lb
Pore Volume:	1,113,739	L	294,220	gal
GW Flux:	2,212,602	L/yr	584,509	gal/yr
Total GW Vol:	12,176,749	L	3,216,767	gal
HRT:	1	yr		

(perpendicular to GW flow) (parrallel to GW flow) (depth)

(treated soil mass)
(Treatment zone PV)
(GW entering per year)

(Total GW vol. treated over)

Reagents Added				
Acetic Acid		lb	0	Kg
Lactic Acid	1,078	lb	490	Kg
Glucose		lb	0	Kg
Soybean Oil	20,224	lb	9,193	Kg
Caustic Soda		lb	0	Kg
Caustic Potash		lb	0	Kg
Soda Ash		lb	0	Kg
Baking Soda		lb	0	Kg
Hydrated Lime		lb	0	Kg

Influent Acidity	6,597	OH ⁻ eq
Base to raise starting pH	85,917	OH ⁻ eq
Acidity from Dechlorination	1,390	OH ⁻ eq
Acidity from Added Substrate	355,567	OH ⁻ eq
Acidity from e ⁻ accept / donors	-269,985	OH ⁻ eq

240 lb

109

Kg

Total Base Required		179,486	OH eq
Total Base Added		3,742	OH eq
Fraction of Base Demand Satisfied		2%	

<u>Lessons Learned</u>

- Target pH has major impact on amount of base required
- When the aquifer pH < 6.3, measure pHBC

Base required can be equal or greater than organic substrate

required

r Aden Associates

ER-201581

QUESTIONS?

Bilgen Yuncu

Draper Aden Associates

919-873-1060 x137

byuncu@daa.com

