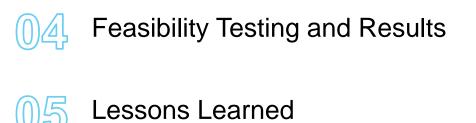
Full-Scale ISCR and EISB to Treat Chlorinated Solvents in Unsaturated Soils at a Former Chlorinated Solvents Manufacturing Plant

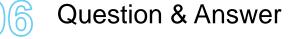
John Daniels, PG, CAPM Mark Motylewski Groundwater & Environmental Services, Inc.

John Daniels, PG, CAPM Principal Hydrogeologist

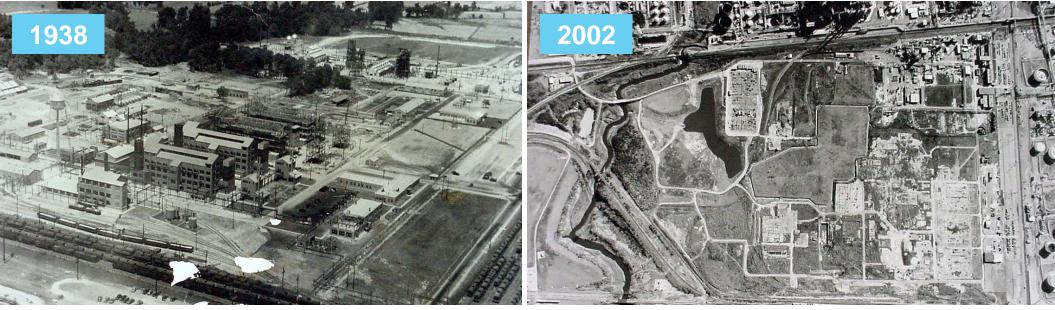
- Based in GES' Stafford, Texas office
- 30+ years environmental consulting experience in US and internationally
- Project Manager: Coordinated & implemented the project

Project Partners:




Presentation Content

2 Site History



Background

- Ethyl Corporation operated a former chlorinatedsolvent manufacturing plant in Baton Rouge, LA.
- Site is managed under RCRA Corrective Action Program with oversight by LA Department of Environmental Quality (LDEQ).
- Active operations continue in one section of the property; most areas involved with the former mfg. plant have been decommissioned and demolished.
- Challenges to remediation included heterogeneous, tight, depositional soils, buried debris from former operations, and proximity to active operations.
- In-situ technology was sought to remediate unsaturated soil (upper 15-feet) in solid waste management unit (SWMU) #77 / AOC-E located within the active area of the site formerly occupied by aboveground chemical storage tanks.
- Shallow soils in the SWMU were impacted to ~15 feet bgs by carbon tetrachloride (CT), 1,2-dichloroethene (DCE), 1,1,2-trichloroethane (1,1,2-TCA), trichloroethene (TCE), and tetrachloroethene (PCE), with concentrations >100 ppm in multiple locations.
- The remedial objective is to achieve a no-furtheraction (NFA) determination for soil from LDEQ.

Site History and Conditions

Project Approach

- GES and SEMS collaborated with Ethyl Corp. to develop a comprehensive feasibility test plan. This included technology evaluation and selection, implementation plan, and sampling and analysis plan.
- Review of historical data led the team to identify in-situ chemical reduction (ISCR) and enhanced in-situ bioremediation (EISB) as potentially appropriate technologies to meet project goals.
- A pre-design investigation (PDI) strategy was developed to obtain baseline soil quality and assess soil microbial population.
- PDI microbial assay indicated that aerobes were the dominant microbes, which is not the most favorable condition for degradation of the contaminants.

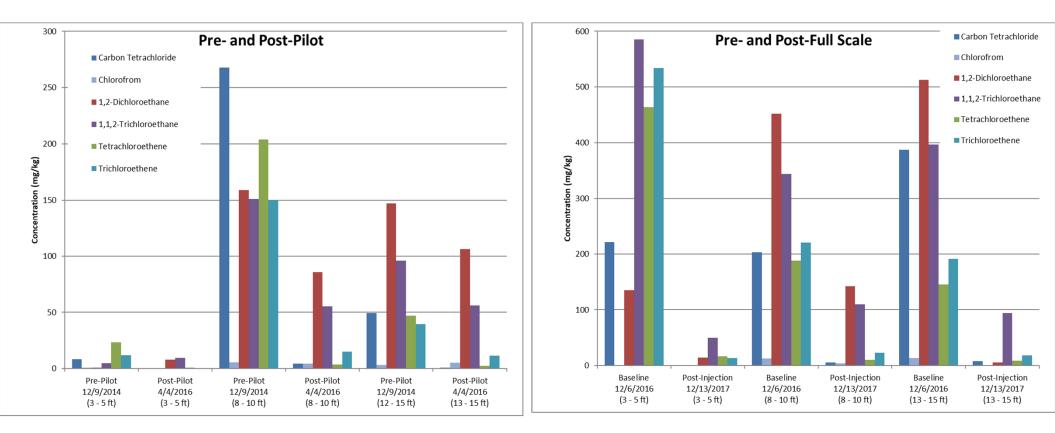
Site soils- tight depositional, mostly silt & clay

ADDR		ulf Sta		ton Rouge, LA	SURFACE EL WATER DEPT BOREHOLE D	H NA		TOTAL DEPTH: CASING EL: WELL DIA.:	15 ft NA NA
Dat	iged By: les Driller ling Com I Rig Typ	t: I pany: I	ensen Esneault 2/6/16 levonian Group LLO leoprobe 6620	: (Lie. #WWC-680)	Drilling Method: Sampling Method: Soil Class. System: Field Screening:	USCS	Pash nacrocore 6 eV Lamp (ppn	D	
Depth (feet)	Sample Interval	Field Screen (ppm)	Blow Counts	SAMPLE LITHO	LOGY Stratig	raphy	Comments	COMPLETION	DETAIL
0		276		CL: Stiff, dark bri clay	wm silty CL		1	1	
		276							11111
2		394		CL: Medium, ligh clay	gray sity				annen
		394							ana a
2	3-5	640		Clay: Medium, lig	ht gray clay Clay				anne.
-5 -		640	DP						and
		330		Silt: Soft, wet silt and gravel	with clay Silt				0 0
		330							contra la
	8-10	245		CL: Medium, gray sitty clay	/ish tan CL				1111111
	0-10	245		2					10000
-10 -		188	DP	Clay: Very soft, ta sit	in clay with Clay				111111
		188							
		202		Silt: Soft, wet, tar	sit Silt				and a
		202							
-	13-15	232		Clay: Stiff, tan cla	y			Boring complete to	
-15 -		232	DP					15 ft	1000
Location	i ing/Latitu	232		General Comments: Lithology by Visual v	Classification			Symbol Key: Lab Sample Loc	

Feasibility Test (Dec. 2015 / April 2016)

- Injected via direct-push over two days
- Two injection locations (Test Area #1 and #2)
- Injected liquid reagents / dechlorinating microbes into vadose zone:
 - 3' 5' ft. / 8' 10' ft. / 12' 15' ft. intervals
 - 89-gal of emulsified vegetable oil (EVO)
 - 20-gal mixture of reactive ceramic reductants, buffers, & nutrients in glycol
 - 7.5-liters of microbes via nitrogen carrier gas
 - 1 2.5 gpm flow rate
 - 25 50 psi injection pressure
- Post-injection soil data collected 120-days after injection
- Significant reductions in CT, PCE, & TCE
- More successful on ethenes than ethanes
- Report submitted to LDEQ / Received Authorization for Full-Scale Implementation

Full-Scale (Dec. 2016 / Feb. 2017)


Application	30 Injection Points	Notes		
Targeted Injection Depths	3'-5' / 8'-10' / 12'-15'	Distribute reagents through vadose zone		
Reagent Liquids	6,530 gal: Mix of Dilution Water (76%), EVO (20%), & Reactive Metal Particles/Calcium Carbonate/Nutrients in Glycol (4%)	3-5 ft.: 992 gal 8-10 ft.: 2,034 gal 13-15 ft.: 3,504 gal		
Microbes	76.4 liters: 50-50 Mixed Bio- Augmentation of Dehalococcoides / Dehalobacter	3-5 ft.: 14.6 liters 8-10 ft.: 26 liters 13-15 ft.: 35.8 liters		
Flow Rate	0.5 – 2.0 gpm	Varied by depth and location		

Full-Scale Test Results (May / Dec. 2017)

- CVOC concentration reductions have occurred at several locations
- Overall microbial population stable to increasing
- Anaerobic and fermenting microbes have increased
- Conditions favorable for continued biodegradation
- CVOC decreases and microbial growth not consistent across area
 - Dense clay inhibited reagent distribution

CVOC Results

Borings B-1/B-3

Boring B-9

SWMU 77 / AOC-E Full-Scale Injection Locations

What Did We Learn?

- Injection of ISCR/EISB reagents was possible with low flow rates and pressures within targeted ranges
- Influence of injected chemistry was not as great as anticipated based on feasibility test results
- Reductions in targeted CVOC concentrations were evident with greatest reductions of CT, PCE, and TCE at several locations
- Alternative chemical delivery methods warrant consideration if future injections are proposed

Question & Answers

Thank You!

John Daniels, PG, CAPM

Principal Hydrogeologist

T. 888.540.0804 ext. 3205 E. jdaniels@GESonline.com

Groundwater & Environmental Services, Inc. 12705 South Kirkwood Road, Suite 220 Stafford, TX 77477

