

SUCCESSFUL TREATMENT OF 1,4-DIOXANE WITH IN-SITU OZONE

<u>Fritz Krembs</u>, P.E., P.G., George Mathes, P.E., Justin Pruis, P.E. Mitchell, R. Olson, Ph.D., P.E., Michael G. Sweetenham, P.G., Kyle Power

Acknowledgements

- "Project Owner"
- Environmental Consulting & Technology (ECT)
- Pace Analytical

- H20 Engineering
- Sirem
- Carus

1,4-Dioxane

- Likely human carcinogen
- Historical use as 1,1,1-TCA stabilizer
- Prolific because
 - Very high solubility
 - Low sorption
 - Recalcitrant to biodegradation (?)
- USEPA RSL 0.46 ug/L (no MCL yet)

Project Overview

- Industrial facility since 1973
- RCRA program / USEPA oversight

CSM – General Geology

- Alluvial Valley **Depositional System**
 - Floodplains
 - Sand-Gravel Bars
 - Meanders
 - Alluvial Fans / Deltas

Gravel, gravel-sand mixtures

Medium to coarse-grained

Fine-grained silty sand

Bedrock

Source: USEPA, 2010

sand

Contaminant Plume

CSM - Geology

 Water Table Unit
 0 to 40 ft bgs

Silt / Clay

Sand Unit
 40 to 95 ft bgs
 Sand w/ Gravel
 and Silt

CSM – Geology Cont.

- Sand Unit (high K) thickest along SE-NW axis
- COCs follow this axis
- Movement toward municipal supply wells PSW#1 and PSW#2

COC Maps

Interim Corrective Measures Study (ICMS)

- Goal = Mitigate off-site Sand Unit groundwater
- First submittal 2013, finalized 2015
- ISCO with Ozone selected

Ozone for ISCO

- Ozone is strong oxidant (2.1v)
- Many industrial applications
- Produces OH* (2.8v)

 Success w/ 1,4-dioxane as of early 2010s

Ozone for ISCO Cont.

Methods

- Ozone gas made with on-site with ozone generator
- Injected through sparge wells

Site-Specific Benefits

- Constant (pulsed) injection for barrier treatment
- 02 is only residual
- Documented success in literature as of 2013

Ozone ICMS Location

Ozone Performance Results

- Up to 85% treatment of 1,4-dioxane
- Treatment of other
 VOCs to non-detect
- Best results in Feb '17, less treatment Ap '17 and June '17

Ozone Performance vs. Location

Cross Section Facing West (south to left)

Permanganate / Persulfate Lab Test

- Good treatment of 1,4-dioxane
- High oxidant concentration required
- Reagent requirements challenging for dilute plume
- Potential residuals at muni. wells

Photo by Carus Corp.

Bioremediation Bench Test

- Aerobic (MNA), Bioaugmentation, Cometabolic w/ propane, Sterile Control
- Test ongoing

Photo by SiREM

Summary and Conclusions

- 1,4-Dioxane successfully treated by ozone as Interim Measure
- Ozone also effective for cocontaminants
- Final remedy pending
 - Bioremediation and MNA evaluations
 - Longer-term ozone data record

Fritz Krembs, P.E., P.G.

fkrembs@trihydro.com

QUESTIONS?

