

Destruction and Transformation of Pyrene by Mineral Surfaces during Thermal Desorption

Cameron Oden Lynn Katz Charles Werth

Thermal Desorption

- Thermal and vacuum wells
 inserted into soil
- Site covered with a vapor cap
- Soil heated to 100 400 °C
 - Thermal Conduction Heating
 - Steam Injection
 - Electrical Resistance Heating
- Contaminants removed by vacuum wells
- Gas collected and treated

150 - 300 °C

Target Average Remediation Temperature

- Chlorinated VOC's 100 °C
- BTEX
- Total Petroleum Hydrocarbons
- Polycyclic Aromatic Hydrocarbons
- Pentachlorophenol
- Dioxins -> 300 °C
- Polychlorinated Biphenyls

G.E.O. Terratherm

Removal and Transformation Mechanisms Evaporation Steam Distillation Hydrolysis Oxidation/Reduction Pyrolysis

Objectives

- 1) Determine the relative importance of transformation by mineral surfaces at various temperatures
- 2) Identify trends in solution properties and mineral composition on transformation
- 3) Evaluate by-product formation in natural composite soil
- 4) Identify conditions that maximize contaminant degradation while minimizing toxic by-product formation

Materials

Mineral	Formula	Redox Couple	Standard Potential (V)
Birnessite	δ-MnO ₂	Mn ⁴⁺ /Mn ²⁺	1.23
Magnetite	Fe ₃ O ₄	Fe ³⁺ /Fe ²⁺	0.98
Hematite	Fe ₂ O ₃	Fe ³⁺ /Fe ²⁺	0.73
Quartz	SiO ₂	Si ⁴⁺ /Si ²⁺	-0.86

Experimental Methods

By-Products Detected

(2 hours, no MeOH, no O_2)

	Mineral	Temp (°C)	Naphthalene	Acenaphthylene	Biphenyl	Phenanthrene	Pyrene
	Quartz	200	Х	Х	Х	Х	\checkmark
		400	Х	Х	Х	Х	

Transformation Experiment

(30 min, no MeOH, no O₂)

Gas Phase Results

(30 min, no MeOH, no O₂)

	Mineral	Temp (°C)	Ethylene	6-C Cmpd's
		150	\checkmark	\checkmark
Bir	Birnessite	200	\checkmark	Х
		250	\checkmark	Х
		150	\checkmark	\checkmark
	Magnetite	200	\checkmark	Х
		250	\checkmark	Х
		150	Х	\checkmark
	Hematite	200	\checkmark	\checkmark
		250	\checkmark	Х

Degradation Pathway

Transformation Experiment

(150 °C, 30 min, MeOH, H₂O, and O₂)

Degradation Pathway with Oxygen Source

Conclusions

Increased temperature (up to 400 °C) leads to increased degradation of pyrene

Mineral composition affects extent of degradation and by-product formation

Degradation occurs through sequential loss of ethylene fragments

Oxygen source (CH_3OH , H_2O) changes by-products formed

Future Work

Conduct flow-through experiments

Perform experiments in a real soil with known mineralogy

Determine surface oxidation state before and after treatment

Acknowledgements

Lynn Katz, PhD Charles Werth, PhD

Terratherm

The University of Texas at Austin Civil, Architectural and Environmental Engineering Cockrell School of Engineering

