

New Antimethanogenic Reagents (AMRs)

Session C5: Advances in Amendments, Wednesday April 11, 2018

Jim Mueller, Greg Booth

(Provectus Environmental Products, Inc - Freeport, IL)

Bernd Rehm, Angela Hassell, Kevin Baker

(ReSolution Partners, LLC - Madison, WI)

John Haselow

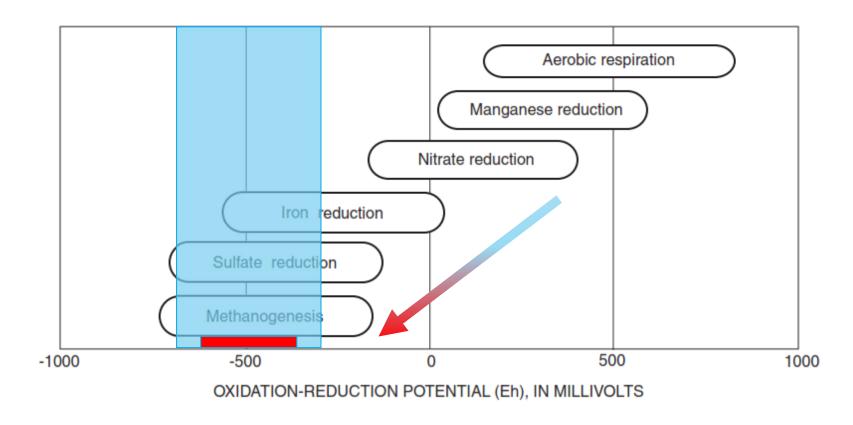
(Redox Tech, LLC - Cary, NC)

Kevin Finneran, (Morgan Ivey)

(Clemson University - Clemson, SC)

Battelle's 11th International Conference on Remediation
Of Chlorinated and Recalcitrant Compounds
April 8-12, 2018
Palm Springs, California

- What is the Problem with Methane?
- Antimethanogenic Reagents (AMRs)
- ♦ AMR-Based Environmental Biotechnologies
 - Provect-CH4® Methane Inhibitor
 - ERD-CH4[®] Ole Ego Liquid, Antimethanogenic ERD Reagent
 - Provect-IR® Solid, Antimethanogenic ISCR Reagent
 - Provect-IRM® Antimethanogenic ISCR/Heavy Metal Immobilization Reagent
 - AquaGate-CH4[®] Antimethanogenic Reactive Cap
 - EZVI-CH4™ Antimethanogenic Reagent for DNAPL
- ◆ Case Study: Dry Cleaner in Urban Setting
- Summary and Conclusions



- Methanogens are microorganisms that produce methane
- Methanogens are Archaea (Woese and Fox, 1977) and hence, from a genetic perspective, *Dehalococcoides mccartii* are as different from methanogens as you are.
- Methanogens are often dominant as compared to DHC spp. and acetogens: averaging 2% to 15% of all soil microbes (Bates, et. al., 2011)
 - When biostimulated populations of DHC can rise to >108 cells/L, but Archaea populations can be still be orders of magnitude greater in number
- Methanogens are important members of synergistic, fickle anaerobic communities = we need some

P

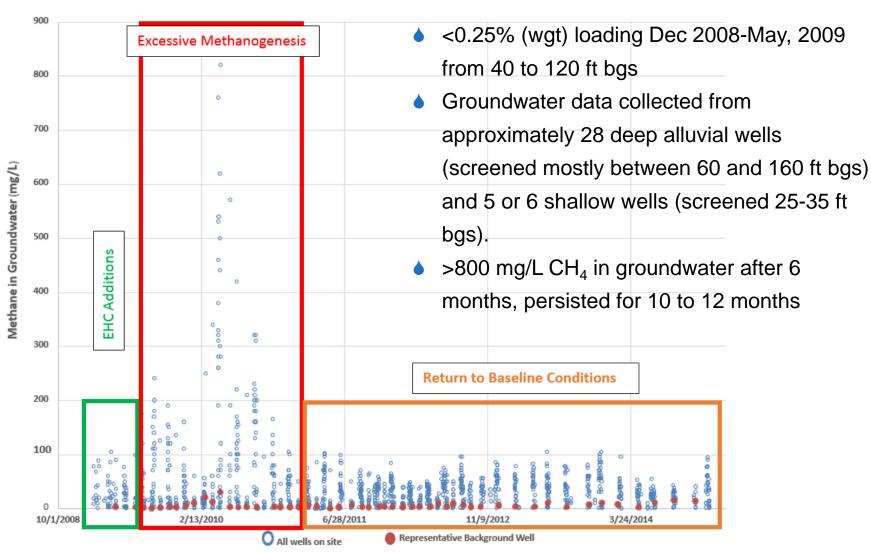
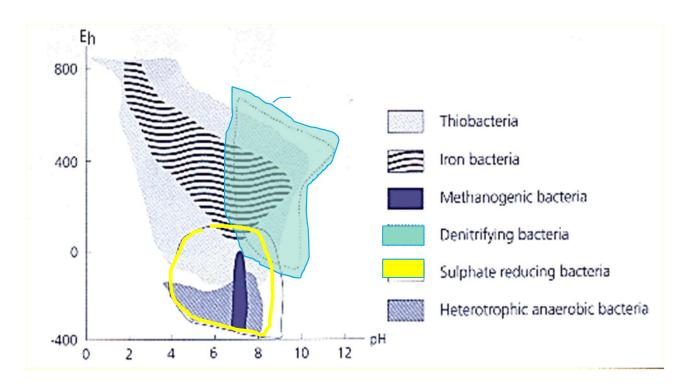

Why Add Carbon/ZVI to Reduce ORP?

Figure 2. Oxidation-reduction potentials for selected microbial processes. (Modified from Stumm and Morgan, 1981.)

Example of Excessive Methanogenesis

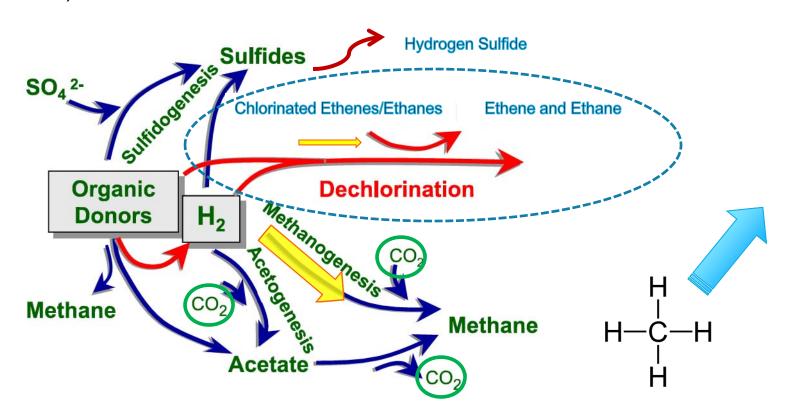


Source: Peale et al, 2009; 2010

Idealized Eh pH Ranges for Microbial Growth

Microbe	Doubling Times
Dehalococcoides spp.	24 to 48 hours
Methanogens with cytochromes	10 hours
Methanogens without cytochromes	1 hour

Excessive CH₄ 16 months post EVO



Source: US DOD, 2016; 2017

Where Does it Go? = Cost and Efficiency Issues: Methanogens dominate anaerobic ecosystems and they can hinder dechlorination by competing for H₂ with dechlorinating bacteria (Yang and McCarty, 1998; yellow arrows modified by Provectus).

What is The Problem With Methane?

#1 Cost and Efficiency Issues: Production of methane is a direct indication that hydrogen generated from the electron donor amendments was used by methanogens instead of the target microbes (e.g., Dehalococcoides spp.), substantially reducing application efficiency.

Constituent	Groundwater Concentration (mg/L)	Molecular Weight (g/mol)	Moles of H ₂ to Reduce Mole Analyte	Moles of H₂ Acceptor In Treatment Area
Contaminant Electron Acceptors (To E	nd Product Ethene)	^		
Tetrachloroethene (PCE)	10.0	165.8	4	1,393
Trichloroethene (TCE)	7.0	131.4	3	364
cis-1,2-Dichloroethene (cDCE)	0.0	96.9	2	0
Vinyl Chloride (VC)	0.0	62.5	1	0
	Complete Dechlorin	ation (Soil+Grour	ndwater) Subtotal	1,757
Native Electron Acceptors				
Dissolved Oxygen	9.0	32	2	199
Nitrate (as Nitrogen)	9.0	62	3	682
Sulfate	50.0	96.1	4	736
Fe ⁺² Formation from Fe ⁺³	20.0	55.8	0.5	63
Mn ⁺² Formation from Mn ⁺⁴	10.0	54.9	1	64
	•	Baseline Geocl	nemistry Subtotal	1,745
Hydrogen Waste for Methane Formation	on			
Methane Formed	20.0	16	4	1,769
	5,271			

Even in a highly oxidized setting with relatively high total concentrations of PCE and TCE, generating just 20 mg/L of methane constitutes greater than 33% of the total amendment consumption based on moles of H₂.

What is The Problem With Methane?

- #2 Potential Health and Safety Issues (in Some Situations):
- ✓ Methane is explosive, with an LEL of 5% and an UEL of 15%.
- Subsurface fires next to an industrial facility at a site in the Midwest USA immediately following the application of a conventional ISCR reagent;
- Generation of up to 23% methane in soil gas immediately adjacent to a public church in North Carolina (with sustained methane production >LEL for 8 to 9 months) from an excavated area treated with conventional ISCR reagent;
- Requirement to install an air sparge/SVE contingency system at a site in northern Indiana due to methane accumulation associated with an application of emulsified oil;
- Changes in aquifer flow dynamics and inactivation of an in situ injection system due to methane production and extensive biomass generation following repeat applications of molasses for ERD at a site in Rio De Janeiro, Brazil; and
- Delayed occupancy of a newly developed, high-rise residential complex in Sao Paolo, Brazil due to presence of elevated methane in soil gas following the use of conventional ISCR reagent.

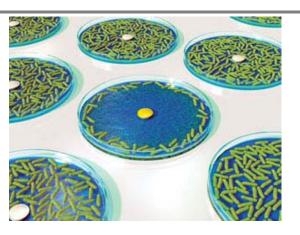
What Does the US EPA Say?

http://www.epa.gov/oswer/vaporintrusion/

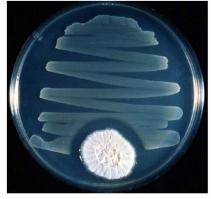

What is Red Yeast Rice (RYR) Extract?

 RYR extract is a substance extracted from rice that has been fermented with a yeast called *Monascus purpureus*.

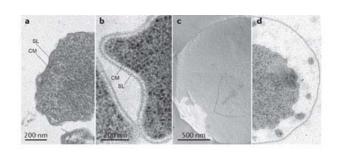
- RYR extract contains a number of natural statins most importantly, Monacolin K - otherwise known as Lovastatin® / Lipitor® /etc.
- In addition to Monacolin K, RYR also contains 9 other statins, mono-unsaturated fatty acids, vitamins and other nutrients that will effectively stimulate anaerobic bacteria.
- RYR is used as a food coloring, food additive and preservative, and is widely consumed directly by humans.

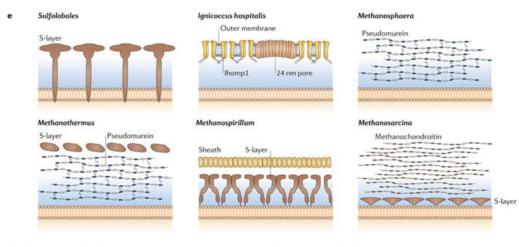


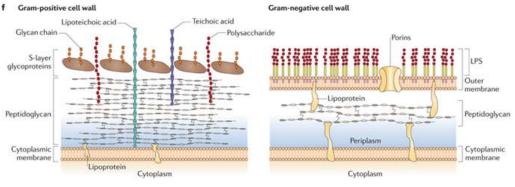
Why Does RYR Produce Statins?



- Many microorganisms produce bioactive compounds that inhibit / regulate the growth and development of other organisms
- Example, antibiotics such as penicillin which is produced by mold of Penicillium genus

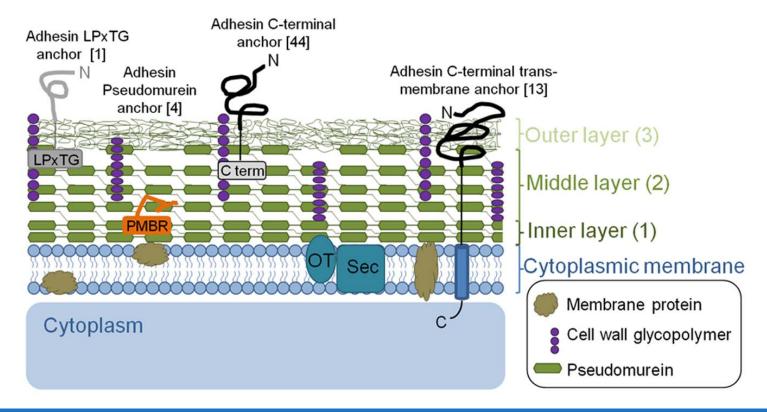


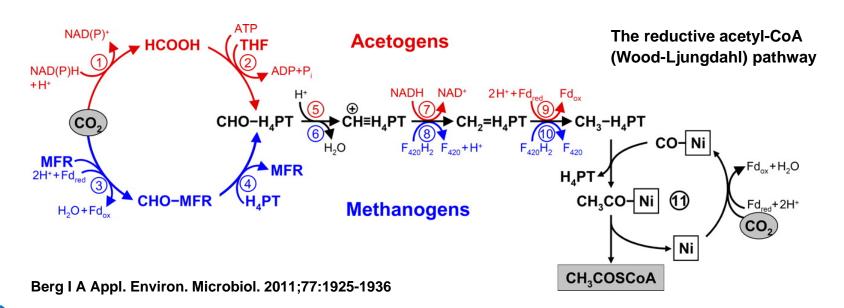




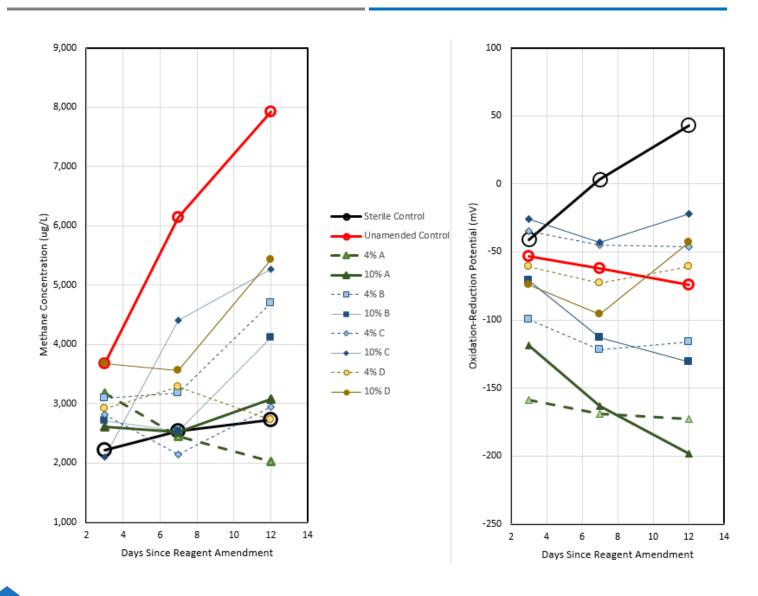
How Does RYR Control Methanogens?

- Bacteria cell walls contain peptidoglycan (murein).
- Methanogens cell walls contain pseudomurein.
- Pseudomuerin is biosynthesized via activity similar to that of 3-hydroxyl-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a key enzyme in the cholesterol biosynthesis pathway in humans (Alberts et al., 1980).

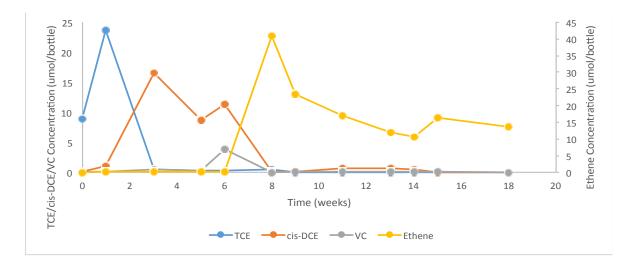


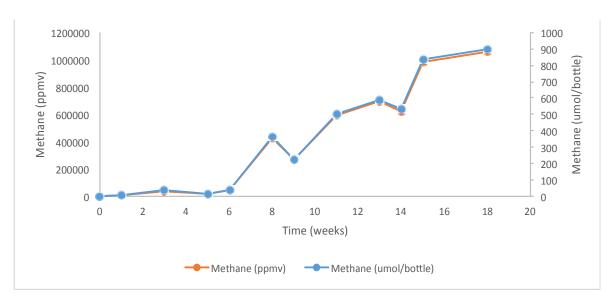


In the presence of a Monacolin K and other statins in Provect-CH4™ HMG-CoA reductase is inhibited, pseudomurein () biosynthesis pathway is interrupted, and methanogens are restricted from growth, development and proliferation.


How Does Provect-CH4 Control Methane?

- Other compounds also interrupt F420 coenzyme synthesis and other systems unique to methanogens which restrict their growth and proliferation.
- Because Archaea are so different from other microbes, these inhibitory effects are selective to methanogens and are not observed in microbes that are typically associated with: i) catabolism of organic contaminants (such as Pseudomonas spp.) and/or, ii) halo-respiration/biodegradation of chlorinated solvents (such as Dehalococcoides spp).

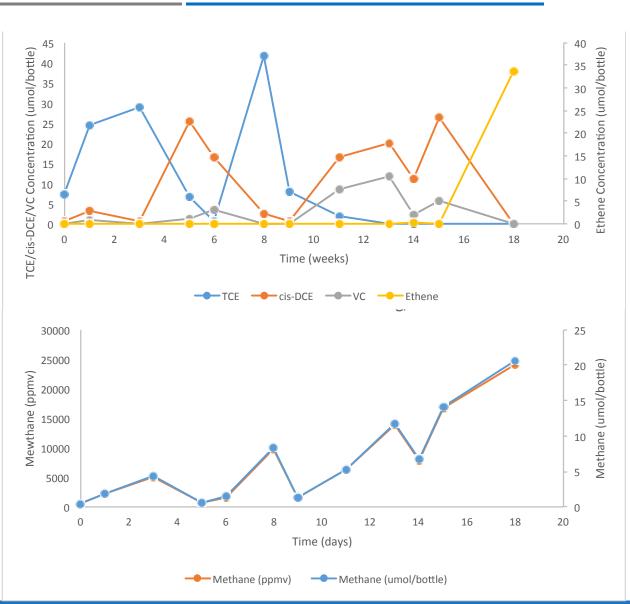

Oil-Based AMRs: Initial Studies


GO AMR Studies from Clemson

- 40 mM EVO to forward
- No AMR

18 days

- ◆ CH4 @ 100,000 ppmV
- ♦ 900 umole



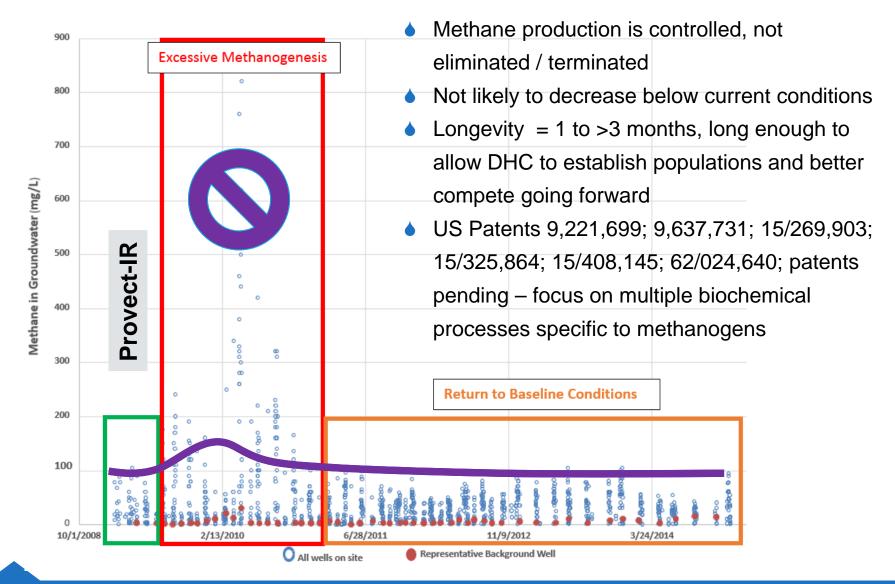
GO AMR Studies from Clemson

- 40 mM EVO to forward
- EGO AMR@ 250 ppm

18 days

- CH4 @<25,000ppmV
- ♦ <20 umole
 </p>
- 75 to >95% reduction in CH4

Synthetic Garlic Oil – Consist Quality



Diallyl Trisulfide Is a Fast H2S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides

Dong Liang, Haixia Wu, Ming Wah Wong, and Dejian Huang Organic Letters **2015** *17* (17), 4196-4199

Controlled Methanogenesis AMR

- Liquid, AMR ERD substrate
- 60 to >90% FC
- Contains RYR and EGO

Photograph 1. Provect-ERD CH4[™] 15:1 Water:Oil (Left), 85% Carbon + 4% AMR Self-Emulsifiable Oil Concentrate (Middle), and 85% Carbon Self-Emulsifiable Oil Concentrate, no AMR (Right).

Product Data

The materials are all combined at our own manufacturing facilities in the USA (and Europe) at proportions and formulations optimized for a given site. ERD-CH4TM is manufactured using 100% food grade ingredients that provide fast- and slow-release characteristics. Provect-CH4[®] antimethanogenic reagent (AMR) is typically added at three to five weight percent of the mass of the fermentable carbon. The common dosage of ERD-CH4 provides groundwater concentrations of 1,000 to 3,000 ppm TOC plus a minimum 150 ppm of AMR within the targeted treatment area.

Color	Translucent Yellow
Density (lbs. / gal)	7.75 to 8.46 (varies based on AMR)
Physical State	Liquid
Odor	Earthy
Viscosity (Brookfield, 30 rpm @25°C)	50-100 cps
pH – 1% w/v in water	7.3

Oil Sample	Al	Р	S	Zn	Fe	Mg	Ca	Na	K
Self-Emulsifiable Vegetable Oil	1.2	1,265	17.2	19.6	1,4	138	135	15.4	507
	to	to	to	to	to	to	to	to	to
	1.3	1,751	28.2	39.7	2.3	143	187	15.9	954

All units mg/kg oil

- ♦ Provect-CH4® AMR Technology
- Multiple, Complex, Hydrophilic, Timed-Release organic carbon source (plant materials, kelp, Ca propionate) @ 390 g H donor / lb product
- ♦ 15% to 85% (wgt) ZVI particles (from 3 to >495 micron)
- Integrated vitamins, minerals and nutrients (yeast extract) specially selected for anaerobes
- Chemical oxygen scavenger to maintain ZVI
- Package in 50 lb <u>safety</u> bags or 2,000 lb supersacs.

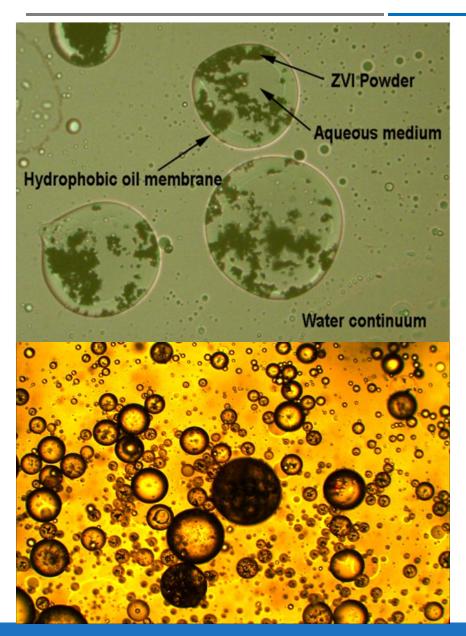
Methanogens (and others) Methylate Metals

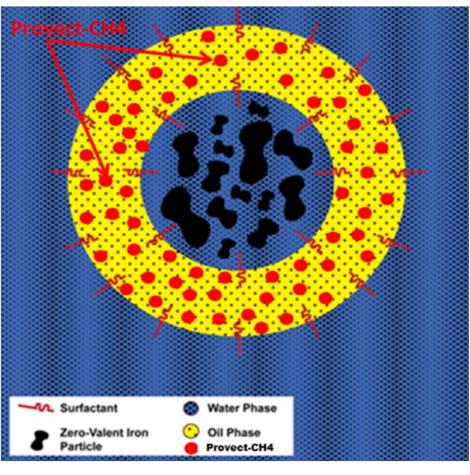
- ◆ Provect-IRM limits the number and activity of methanogens hence the targeted metal contaminants are more able to participate in the desired stabilization reactions.
- Moreover, the overall toxicity of the site is not increased via the generation of methylmetal(loids) as a consequence of the treatment process (example − biomethylation of arsenate).

Challenger mechanisms for biosynthesis or Arsenate (Challenger, 1945)

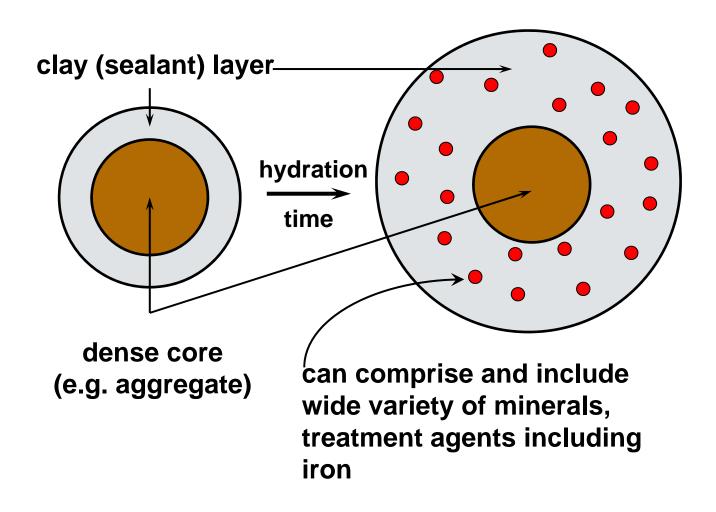
Provect-IRM Solid, Antimethanogenic ISCR Reagent for Heavy Metals

- Formulated based on site requirements
- Provect-CH4 AMR Technology
- Multiple, Complex, Hydrophilic, Timed-Release organic carbon source (plant materials, kelp, Ca propionate)
- Inorganic S source, if needed
- ◆ 15% to 85% (wgt) ZVI particles (from 3 to >495 micron)
- Integrated vitamins, minerals and nutrients (yeast extract)
 Chemical oxygen scavenger to maintain ZVI
- ◆ Package in 50 lb <u>safety</u> bags or 2,000 lb supersacs.

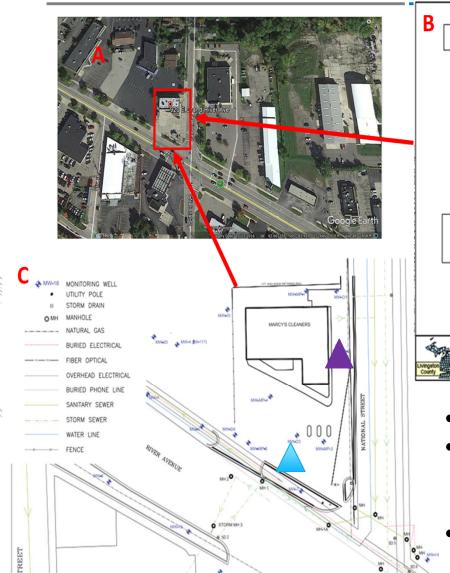


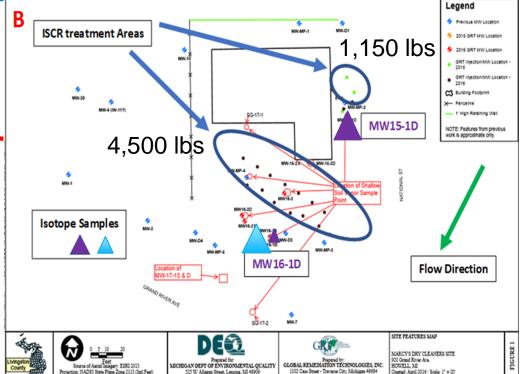


EZVI-CH4™ AMR DNAPL Technology



Case Study: Provect-IR®

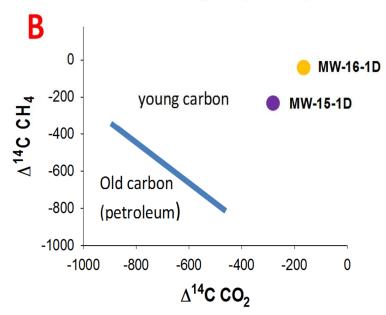



- Active Dry Cleaning Facility, southern Michigan
- Shallow groundwater 5 ft bgs confined by a clay layer at 12 ft bgs.
- ◆ PCE (max. 35 ppm) and TCE (max. 14 ppm) along with an accumulation of anaerobic catabolites cis 1,2-DCE (max. 25 ppm) and some VC (max. 4 ppm).
- Source area up to 70 ppm total CVOCs
- Groundwater migrates through a sandy aquifer into a damaged storm sewer.
- ♦ A sanitary sewer feeder from the active dry cleaner exacerbating the PCE migration problem by allowing warm water with potential contaminants and surfactants to enter the groundwater.
- ♦ Consultant and Agency selected Provect-IR over conventional ERD and ISCR reagents known to induce methane production.

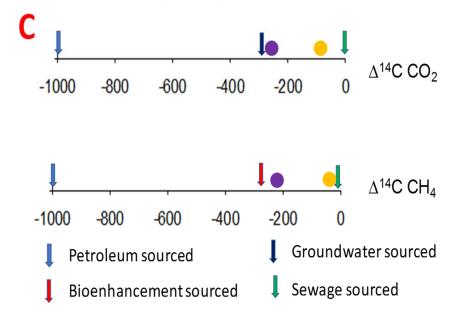
Phase II Implementation (March 2016)

- >90% PCE removal, no DCE/VC stall
- ca. 9 months post Provect-IR treatment CH4 from 5 to <10 mg/L was observed at two well locations
 - >200,000 ppmV in soil gas at MW-16S 🔼

Origin of CH4 After 9 Months


Δ^{14} C and δ^{13} C Data Review

Stable Carbon and Radiocarbon Data Summary


A

Sample Identification	Туре	F Modern	Fm Err	Age (years)	Age Err	δ^{13} C	Δ ¹⁴ C
MW-16-1D-CO2, groundwater	CO2	0.8469	0.0020	1,340	20	-71.48	-159.96
MW-15-1D-CO2, groundwater	CO2	0.7261	0.0024	2,570	25	-16.65	-279.81
MW-16-1D-CH4, groundwater	CH4	0.9669	0.0019	270	15	-57.96	-40.95
MW-15-1D-CH4, groundwater	CH4	0.7677	0.0016	2,120	15	-60.61	-238.54

Radiocarbon Isotope CH₄ and CO₂ Data

Potential CO₂ and CH₄ Δ^{14} C Source Values

So, is Methanogenesis Important?

- We never see problems
- My site is remote
- Our amendments don't make methane
- ✓ It's bad to stop methanogens
- Our clients don't worry about it
- ✓ We will just add more reagent

Response

mostly because we don't look ignores efficiency issue then they are not working well it's beneficial to control them then YOU better worry about it... \$\$ not acceptable to our clients

You decide

- ✓ Look at your own data
- ✓ Evaluate your site conditions
- ✓ Co-metabolism (IRB, SRB) of CHCs is slow, and mostly stalls at DCE/VC
- Experienced clients understand the value added
- ✓ What do your regulators say ...

Summary

- Natural statins in RYR, essential plant oils and other materials can be used to effectively and specifically control methanogenic activity
- ◆ The methane control technology has been integrated into various products designed for the environmental remediation industry
 - Provect-CH4® ERD Supplement / Methane Inhibitor
 - ERD-CH4® Ole Ego™ Liquid, Antimethanogenic ERD Reagent
 - Provect-IR® Solid, Antimethanogenic ISCR Reagent
 - Provect-IRM® Antimethanogenic ISCR Reagent for Metals
 - AquaGate®-CH4™ Antimethanogenic In Situ Sediment Capping Technology
 - EZVI-CH4™ Antimethanogenic Source Area / DNAPL Treatment
- ◆ The main benefit is improved performance = "better gas mileage"
- Other potential benefits relate to safety, regulatory compliance, and sustainability

Provectus Environmental Products

- Complimentary Site Evaluation
- Complimentary review of quarterly field performance data for 1 year with every project
- Laboratory Treatability Studies
- Turn-Key, Pay-for-Performance Contracting Options
- Project Specific Guarantees and Warranties

- USA (Illinois, New York, Ohio, Pennsylvania, Louisiana)
- Brazil, China, Colombia, Israel, Italy, Spain and Taiwan