

Evaluation of Potassium Persulfate as a Permeable Reactive Barrier at Three Different Sites

Brant Smith/PeroxyChem Lisa Kammer and Jim Soukup/Weston Solutions Carey Letts and Venus Sadeghi/AECOM Paula Lyon and Tim Pac/ERM

Eleventh International Conference on the Remediation of Chlorinated and Recalcitrant Compounds Palm Springs, CA April 2018

- Introduction to Klozur[®] persulfate
 KL[©]ZUR[®] SP
- Oxidative and reductive pathways from a single technology
- Column Studies
- Questions

Klozur[®] Persulfates

KLOZUR[®] SP

 Environmental grade sodium persulfate

KLƏZUR®

 Environmental grade potassium persulfate

Key Differences:

- Solubility
- Na⁺ vs K⁺ residual

Temperature	Klozur SP		Klozur KP	
(°C)	wt%	g/L	wt%	g/L
0	36.5	480	1.6	17
10	40.1	540	2.6	29
20	41.8	570	4.5	47
25	42.3	580	5.7	59

Characteristic	SP	КР
Formula	$Na_2S_2O_8$	$K_2S_2O_8$
Molecular Weight	238.1	270.3
Crystal density (g/cc)	2.59	2.48
Color	White	White
Odor	None	None
Loose bulk density (g/cc)	1.12	1.30

Klozur SP and Klozur KP: Application Opportunities

KLOZUR[®] SP

Classic: Applied at thousands of sites, the high solubility of Klozur SP is ideal for:

- Delivery of significant oxidative mass into the target area
- Source zone treatment
- Highly contaminated sites including nonaqueous phase liquids
- High concentration applications

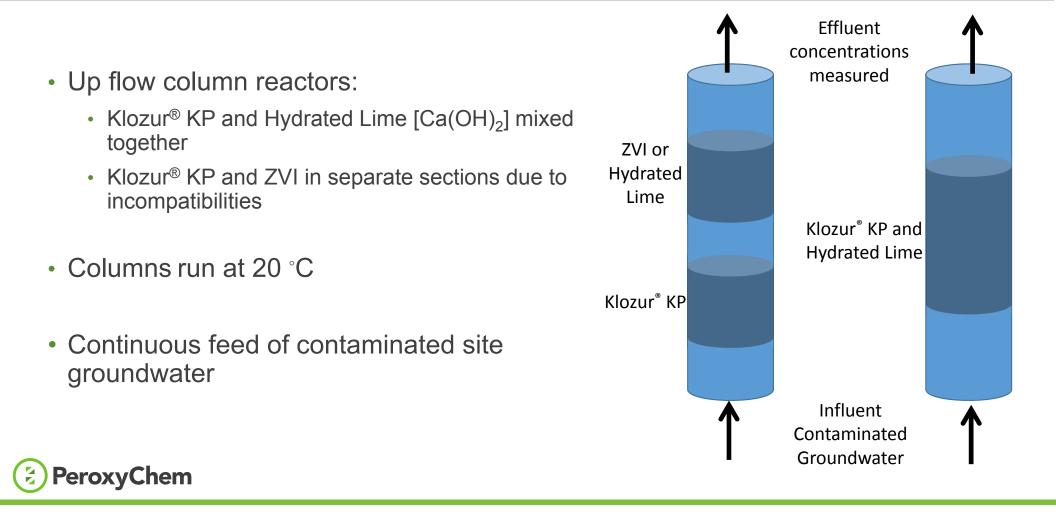
KLOZUR®

New: Low solubility and extended release can help address some of the previous technical challenges :

- Tight soils / clays matrix diffusion
- Permeable reactive barrier applications
- Diffusive aqueous phase contaminants (plumes, aqueous phase contaminants, etc)
- Slow back diffusion reactions

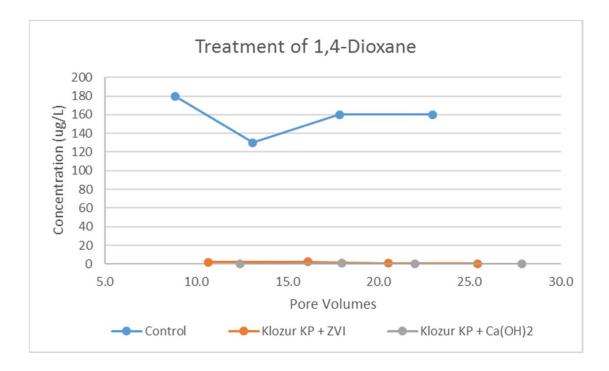
Degradation Pathways

Oxidative/Aerobic	Either	Reductive/Anaerobic
Petroleum Hydrocarbons	Chlorinated Ethenes	Select Pesticides
BTEX	Chlorobenzenes	Select Energetics
PAHs	Phenols	Carbon Tetrachloride
Oxygenates	Select Pesticides	1,1,1-Trichloroethane
1,4-dioxane	Select Fluorinated Compounds PCBs	Dichloroethanes
	Select Energetics	
	Dichloroethenes	



Sites

- Klozur[®] KP as a permeable reactive barrier was evaluated at three sites:
 - Site 1: <u>Weston Solutions</u> Superfund site in the New England
 - Site 2: <u>AECOM</u> Former manufacturing facility located in Northeast
 - Site 3: <u>ERM</u> Private site located in the Pacific Northwest

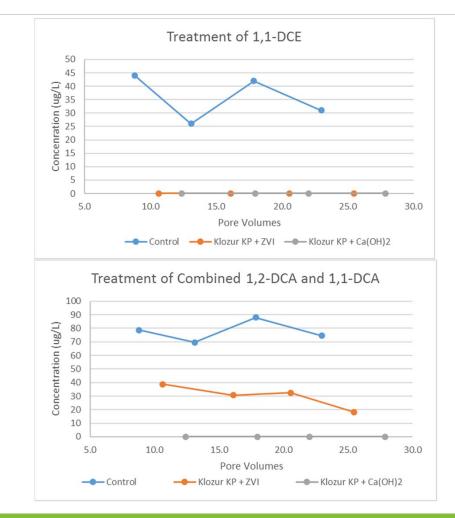

Treatability Column

Site 1: New England Superfund Site

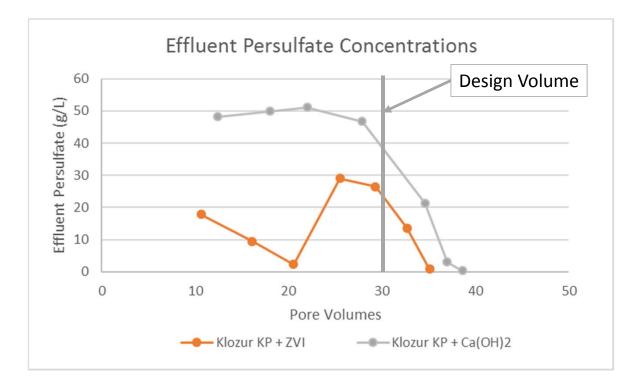
- Consultant: Weston Solutions
- Former chemical waste storage and bulking facility
- Residual 1,4-dioxane and 1,1,1-Trichloroethane (1,1,1-TCA) daughter products
 - 1,1-Dichloroethane (1,1-DCA)
 - 1,2-Dichloroethane (1,2-DCA)
 - 1,1-Dichloroethene (1,1-DCE)
- Soil matrix of clayey till was bench tested. Site includes sand lenses.

Site 1: Treatment of 1,4-Dioxane

1,4-Dioxane treated by oxidative pathway


 Treated to below the detection limit by both ZVI and hydrated lime activated persulfate

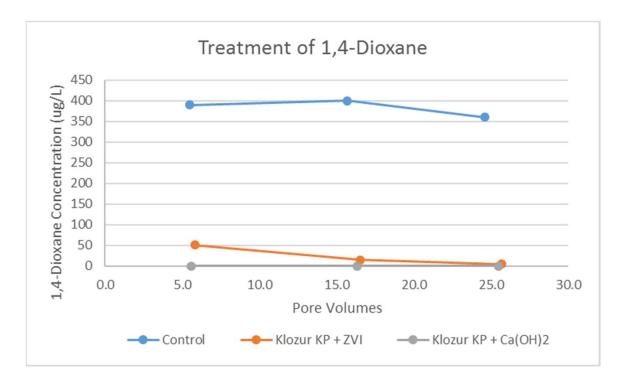
 Persisted for theoretical design period


Site 1: Treatment of CVOCs

- DCE can be treated by both oxidative and reductive pathway
- DCAs are primarily treated by a reductive pathway
 - Treated to below the detection limit by hydrated lime activated persulfate
 - Partial reduction by ZVI activated persulfate

Site 1: Extended Release of Klozur[®] KP

- Klozur[®] KP persisted in both reactors for longer than the design period
 - Hydrated lime lasted longest
 - ZVI activation showed more consumption of persulfate, but effective treatment for design life

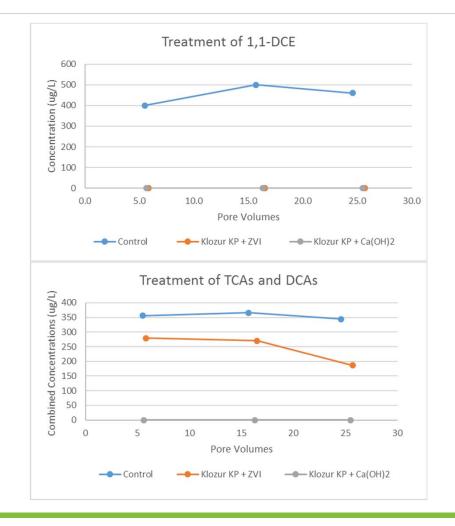


Site 2: Former Industrial Facility in the Northeast

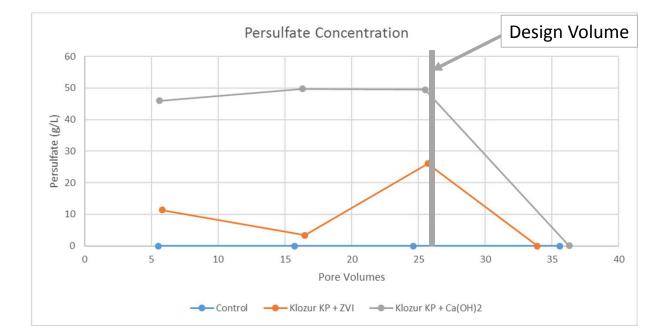
- Consultant: AECOM
- Residual 1,4-dioxane, TCA, and TCA daughter products
 - 1,1,1-Trichloroethane and 1,1,2-Trichloroethane (TCAs)
 - 1,1-DCA and 1,2-DCA
 - 1,1-DCE
- Silty soils with sand lenses

Site 2: Treatment of 1,4-Dioxane

1,4-Dioxane treated by oxidative pathway


 Treated to below the detection limit by hydrated lime activated persulfate

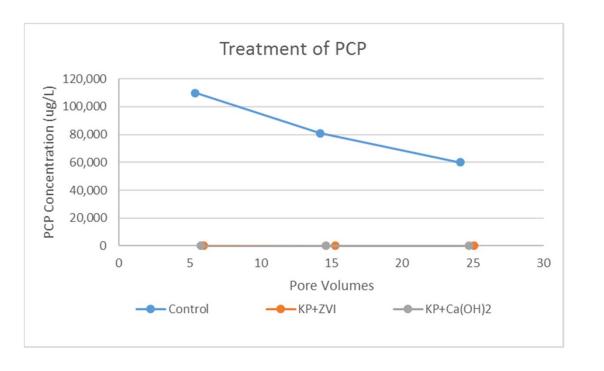
 Up to 98.7% reduction in column activated with ZVI


Site 2: Treatment of CVOCs

- DCE can be treated by both oxidative and reductive pathway
- TCA/DCA are primarily treated by a reductive pathway
 - Treated to below the detection limit by hydrated lime activated persulfate
 - Partial reduction by ZVI activated persulfate

Site 2: Extended Release of Klozur[®] KP

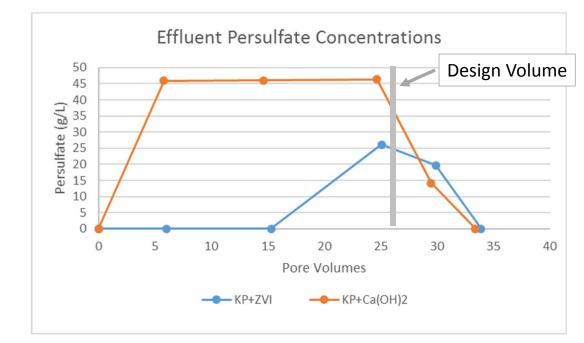
 Klozur[®] KP is thought to have persisted in both reactors for longer than the design period



Site 3: Pacific Northwest Site

- Consultant: ERM
- Former wood treatment facility
- Residuals include PAHs, TPH, and Pentachlorophenol
 - Pentachlorophenol (PCP) primary COC at proposed PRB boundary
- Soil matrix: Sand lens below a confining silt lens

Treatment of Pentachlorophenol


PCP treated by oxidative or reductive pathway

- Influent was spiked
- Concentrations reduced by greater than 99.9% passing through both ZVI and hydrated lime activated persulfate systems
- Reductive pathway beneficial in dechlorinating PCP

Extended Release of Klozur[®] KP

- Klozur[®] KP persisted in both reactors for longer than the design period
 - Hydrated lime lasted longest
 - ZVI activation showed more consumption of persulfate, but effective treatment for design life

Site Status

- Site 1 (New England-Weston Solutions)
 - Evaluating natural attenuation. Treatment with Klozur[®] KP is an alternative if natural attenuation is not successful.
- Site 2 (Northeast-AECOM)
 - Pilot tested in December 2017. KP still persisting. Initial data successful.
 - Full scale design underway.
- Site 3 (Pacific Northwest-ERM)
 - Pilot test scheduled for summer 2018.

Conclusions

- Klozur[®] KP was successfully used in column studies emulating a permeable reactive barrier
- Extended persistence over multiple pore volumes complied with theoretical estimates
 - Permeable reactive barriers, low permeable soils, low solubility contaminants, and/or low remedial goals
- Klozur[®] KP can be activated with:
 - Hydrated lime to provide both an oxidative and reductive pathway
 - ZVI to provide primarily an oxidative pathway
- Many complex sites with comingled contaminants require treatment with both an oxidative and reductive pathway

Questions

Brant Smith brant.smith@peroxychem.com

