

Combine Optimization of Surfactant Enhanced Recovery and ISCO Alkaline Activation to Treat a Brazilian Latosol Soil Contaminated with DRO Diesel

Cristina Deperon Maluf – AmbScience Engenharia Ltda
Cibele Vicino Witier – AmbScience Engenharia Ltda
Paulino Rodriguez – Senac University

Brazilian Context and Challenges

- Trapped contamination in soil has been the main cause of unsuccessful remediation processes in Brazil:
 - Lack of soil characterization;
 - Granulometry and organic matter.

- Soil flushing with surfactants → good alternative to mobilize contaminants from soil to GW:
 - Enhance extraction;
 - Better chemical in situ treatment in GW.

Objectives

- What we were expecting in the beginning:
 - Evaluate the behavior of surfactants in a Brazilian soil rarely studied, impacted with one of the most common contaminants (Diesel DRO);
 - Evaluate the extraction performance for 2 different surfactants;
 - Rates of contaminants' extraction (BTEX, PAH, TPH);
 - Relations with soil.
 - Test with Design of the Experiment (DOE) three main factors:
 - Surfactant concentration;
 - Flushing time;
 - Flow rate.
 - To test if the solubilized and mobilized NAPL (Diesel) can be oxidized in liquid phase and still allows the re-use of remaining surfactant in GW.

The Experiment

- Latosol → most common kind of soil formed under tropical conditions
 - 750 mi ha (World) → 300 mi ha (Brazil);

Surfactants

- Surfactants are Surface Active Agents that Lower the Surface Tension of a Liquid and Decrease the Interfacial Tension between Two Liquids;
- Can act as: Detergent / Wetting agent / Emulsifier / Foaming agent / Dispersant

Surfactant V10

- Plant-derived
- Non-ionic
- Fatty odor
- Specific gravity:
 1.030 1.038
- Chlorinated solvent, petroleum fuel oils (diesel, gasoline, ...)

Surfactant V3

- Plant-based citrus solvent
- Non-ionic
- Specific gravity:
 0.972 0.984
- Heavier HCs

Biodegradability test – 90% in 13 days

The Experiment

• Columns:

- 172 g of contaminated soil in each column;
- Saturation with distilled water from base to top;
- 4 L surfactant solution flush (4 flushes/washes of 1L);
- Measurement of flow rates and residence time → important factors for extraction rates;

• TPH and BTEX are compounds of interest (amount and

Results

- Surface tension of water: reduced from 72.63 to 31.19 mN/m;
- Both surfactants were able to remove contaminants, in different levels;
- No results were observed in washing with water only (control) → no extraction;
- Surfactant concentration, flow rate and flushing time were key factors observed.

Results

Surfactant V10

Average Flow Rate: 4,89 ml/min

Average Flushing time: 204,58 min

Surfactant V3

Average Flow Rate: 5,62 ml/min

Average Flushing time: 177,97 min

TPH Extraction by Wash - Surfactants V10 and V3

Surfactant V10

Results for Surfactants V10 and V3 for TPH

BTEX Extraction by Wash for Surfactants V10 and V3

Surfactant V10

Results for Surfactants V10 and V3 for BTEX

Summary of Removed Mass for BTEX and TPH

V10 conc.	Wash	Mass/L TPH (mg)	Total mass TPH (mg)	Mass/L BTEX (mg)	Total mass BTEX (mg)
1 g/L	1st w	2,2	8,61	0,0211	0,0211
	2nd w	2,04		0	
	3rd w	1,99		0	
	4th w	2,38		0	
2 g/L	1st w	3,95	11,78	0,3	0,4104
	2nd w	2,51		0,09	
	3rd w	3,29		0	
	4th w	2,03		0,0204	
3 g/L	1st w	1,29	7,02	0,08678	0,20813
	2nd w	1,54		0,09542	
	3rd w	1,91		0,02593	
	4th w	2,28		0	
4 g/L	1st w	1,26	9,13	0,0915	0,2125
	2nd w	1,97		0,06694	
	3rd w	1,74		0,04159	
	4th w	4,16		0,01247	

V3 conc.	Wash	Mass/L TPH (mg)	Total mass TPH (mg)	Mass/L BTEX (mg)	Total mass BTEX (mg)
1 g/L	1st w	4,89	20,376	0,09	0,0946
	2nd w	4,80		0,00	
	3rd w	5,43		0,00	
	4th w	5,26		0,00	
2 g/L	1st w	12,81	88,56	0,0757	0,1139
	2nd w	13,47		0,0084	
	3rd w	12,3		0,0117	
	4th w	49,98		0,0181	
3 g/L	1st w	6,13	26,28	0,09	0,0899
	2nd w	7,31		0,00	
	3rd w	6,80		0,00	
	4th w	6,04		0,00	
4 g/L	1st w	9,75	42,83	0,1322	0,1797
	2nd w	11,43		0,0184	
	3rd w	9,89		0,011	
	4th w	11,76		0,0181	
5 g/L	1st w	15,99	54,45	0,0708	0,1962
	2nd w	14,31		0,0117	
	3rd w	12,95		0,108	
	4th w	11,2		0,0057	
10 g/L	1st w	12,922	45,041	0	0
	2nd w	10,587		0	
	3rd w	11,525		0	
	4th w	10,007		0	

Statistics ANOVA and Surface Response Model

- <u>Factors</u>: Surfactant concentration (g/L) / Flush time (min) / Flow Rate (mL/min);
- Response: Contaminant Extraction (ug/L).
- Duplicates were all considered and showed good relations.
- Considerations for V3:
 - As flow rate explains relations as equal as flush time, this factor was not considered in the model;
 - Statistical model has shown to be valid, with R2 adjusted higher than 0.73 and all p-values less than 0.01 (1% error as maximum, for flushing time);
 - Flush time and surfactant concentration explains at least 73% of the contaminant extraction.
- Considerations for V10:
 - In all experiments, better extractions related to 4th wash → no relation with higher retention time → considered as not impacting for this correlation;
 - Statistical model has shown to be valid, with R2 adjusted higher than 0.8 and all p-values less than 0.06 (6% error as maximum);
 - All factors have interactions, so 3D surface graphic is not possible to be designed (must be 4D);
 - Variables explain more than 80% of extraction results.

Statistics and Surface Response Model

ISCO Activation and Treatment

- Washing samples after extraction by surfactant, after 4 washes, were composed and sent to bench treatability test.
- Treatability test conditions:
 - Oxidant: Sodium persulfate;
 - Activation: Alkaline pH 10.5 11.0 (NaOH);
 - Reaction time: 0 time; 24h; 48h; 96h;
 - Initial oxidant concentration: 30 g/L;
 - Final oxidant concentration: 23.9 g/L;
 - CoC (TPH) initial concentration: 12.5 mg/L
 - After 24h no Diesel was detected. Remaining timing reactions kept the same result (no Diesel detected);
 - Initial IFT: 32.13;
 - IFT after 96h: 34.97 mN/m.

ISCO Results

Final Conclusions

- Surfactants were able to extract contaminants (BTEX and TPH) in all concentrations, at different rates.
- Surfactant V3 had better extractions for TPH and Surfactant V10 for BTEX;
- Specific properties of V3 showed around 15% higher flow rates.
- The 2g/L surfactant concentration had better extraction rates at both surfactants
 - Higher concentration did not lead to higher extraction rates necessarily
 - Relations were not linear and other factors may be determinant.
- DOE with statistical treatment validated experiments and the consideration of Surfactant concentration, Flushing time and Flow rate as key factors for extraction rates.
- NAPL after solubilized and mobilized to water phase could be completely oxidized. Oxidant as well as the surfactant remained after the process:
 - Surfactant and oxidant can be recycled.

Acknowledgments

- Rodrigo Romero LabCris
- Alexandre Franco Bachema
- Leonardo Barreto EP Analítica
- Laís Vicino

Thank you!

cristina.maluf@ambscience.com