PollEv.com/davidalden644

5 Lessons Learned From Surfactant-Enhanced Aquifer Remediation of Light and Dense NAPLs

David Alden, P.E.

Tersus Environmental

I of 28

Does SEAR work for DNAPL?

oll Everywhere

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

I. It works for DNAPL

Goals?

- MCL's
- Reduce Mass Discharge
- Mass Removal
- Reduce O&M Costs

- Composition
- GTP ratio

Hydraulic Control

- Trapping Number
- Flow Scheme

Composition

 $HLD = \ln(S) - k \cdot EACN + C_c - a_T (T - 25^{\circ}C) + f(A)$

• Composition

• Composition

Are there succesfull Source Zone DNAPL remediation techniques?

NO: Application of existing technologies may not substantially reduce risk and could potentially worsen site conditions (e.g., through redistribution of DNAPL, metal release, sterilization, or increased aqueous-phase contaminants)

YES: A number of innovative technologies have been developed for substantial mass removal under favorable conditions.

oll Everywhere

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

• GTP ratio

Hydraulic Control

Fig. 1. Schematic diagram of vertical circulation well.

$$Ca = rac{\mu v}{\sigma}$$
 $Bo = rac{\Delta
ho \cdot g \cdot r^2}{\gamma}$

TN (trapping number) = $(Ca^2 + 2Ca \cdot Bo \cdot \sin \theta + Bo^2)^{0.5}$

2. Push-pull \neq line-drive

Push-Pull

- Pilot
- "One well at a time"
- Limited water
- High K
- Biosurfactants

Line Drive

• All other scenarios

3. Project budgets vary significantly

tersus environmental

Love's Stores, Oklahoma City, OK

LA LNAPL Working Group

4. Prepare for non-technical challenges

5a. Pilot tests are decision points

5b. Include performance monitoring

Can you name NAPL characterization methods?

oll Everywhere

Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app

Large pockets of whitish-brownish foam can be seen on the St. Joseph River

Bonus: bring defoamer!

Summary

- I. Lot's of research on SEAR for DNAPLs
- 2. <u>Hydraulic control</u> is imperative
- 3. \$100/CY
- 4. This technique is not yet "mainstream"
- 5. Use the 6-step approach and include performance monitoring

Conclusions

Small-scale heterogeneities are problematic

Removal is from high K zones

The answer lies in combining techniques

Less is more

Thank you!

David Alden, P.E. **Tersus Environmental** <u>david.alden@tersusenv.com</u>

