wood.

EFFECTIVE MANAGEMENT of a RECALCITRANT PETROLEUM HYDROCARBON IMPACTED SITE by PHYTOREMEDIATION

Patrick Campbell, Jay Grosskleg, Kris Bradshaw

Sustainable In-Situ Remediation Co-operative Alliance

woodplc.com

SIRCA

2

- Sustainable In-Situ Remediation Co-operative Alliance
 - Dedicated to advancing research activities, remediation technologies and risk assessment on contaminated sites.
 - Est. 2014 by Federated Co-operatives Limited and other Co-operative research partners
 - Industrial Research Chair at University of Saskatchewan

C8_0850 #375_Campbell, International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2018

<u>www.sirca.coop</u>

A presentation by Wood.

Site facts

Problem

- Petroleum Hydrocarbon Impacted Site
 - Vacant
 - Small rural property
 - Low value
 - No intended future use
- Low level impacts
 - Low risk
 - Limited soil disposal options

Problem

- Typical site condition
- As a Co-op, our client has a strong commitment to the community and managing these legacy sites

Research Initiatives

Objective: Establish phytoremediation as a sustainable option to remediate former recalcitrant petroleum hydrocarbon impacted bulk plant sites.

- Soil mixing
 - Improve subsurface bioremediation conditions
 - Addition and distribution of nutrients
 - Improve uniformity of O₂ and native microbial populations
 - Reduce soil compaction typical of traffic and use patterns
- Application of a microbial root growth supplement
 - Typical in landscaping industry to enhance survival and establishment of trees and shrubs

• • •

Research Initiatives

- Evaluate the use of lower growing tree species
 - Typical popular and willow species associated to phytoremediation pose a potential growth height issue to overhead utilities
- Evaluate the effects on groundwater conditions
 - Hydraulic control and limiting the off-site migration of impacts
- 10 year study time frame

Initial site conditions

- Typical bulk plant site
 - Oil shed
 - 5-12,500 L fuel ASTs
 - Truck and rail loading
 - Low overhead utilities
- Decommissioned 1992
- Assessed 1996
- No further action until remedial activities in 2012

1996 assessment results

- Glaciolacusterine sediments, glacial clay till and shale
- Shallow subsurface conditions
 - 0-0.5m clay and granular fill
 - 0.5-3.0m sand
 - 3.0-4.8m silty clay
 - >4.8m high plastic clay
- Impact zone 0-3.1 m bgl
- GW depth 1.3-1.5 m bgl
- Regional potable conditions however limited to no use in area

PHC concentrations (range in ppm)

	Soil	GW
Benzene	2.8-5.7	0.26
Toluene	0.24-45	0.66
Ethylbenzene	2.4-13	0.13
Xylenes	1.5-74	0.43
Total volatile*	380	64
Total semi- volatile**	41-1400	0.06

* \approx PHC F1/F2 range plus BTEX

** ≈PHC F2-F4 range

Soil mixing - 2012

- Excavation 55m x 38m x 3m deep
- Homogenized soils
- Soil blended with 1300kg agricultural fertilizer
 - 420kg 46-0-0 urea
 - 409kg 0-0-6 potash
 - 472kg 11-52-0 urea phosphorous blend
 - application rate 0.2 kg/m³ soil

Soil mixing – sampling

- Soils were sampled during excavation and blending
 - Sampling assisted in achieving relative homogeneity
- Excavation extents sampled
 - Soil vapours 30->100% LEL
- Select samples submitted for BTEX and PHC F1-F4 fraction analysis and nutrients
- Backfilled in 1 m thick lifts

Soil mixing – excavation

12 A presentation by Wood. C8_0850_#375_Campbell, International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2018

Soil mixing – backfilling

Monitor well – install

- On completion of backfilling, five monitor wells installed May 2012
- 50 mm diameter
- 4.6-6.1 m depth
- Wells located within impacted zone and along perimeter

Monitor well – sampling results

- Initial GW sampling June 2012
- Depth to water 1.6 to 2.2 m bgl
- Sheen detected in 3 of 5 wells
- Standard field testing
- PHC samples determined:
 - 0.4-7.3 mg/L benzene
 - 0.2-3.8 mg/L toluene
 - 0.2-1.4 mg/L ethyl-benzene
 - 0.6-3.3 mg/L xylenes
- Nutrients
 - No detectable NO₃
 - 1.3-5.9 mg/L NH₃

Tree planting

- 476 trees planted
 - 2.2 m average spacing
- Two groups established
 - Control
 - Soils amended with Myke[®] tree and shrub mycorrhizae
- Mix of poplars and willows
 - Deep rooting
 - Maturity height of 15-30m poplars and 4.5-9m willows
- 1 row of cottoneasters planted under power lines
 - 4m height at maturity

Tree planting

17 A presentation by Wood. C8_0850_#375_Campbell, International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2018 🥚 🔵

Tree planting

18 A presentation by Wood. C8_0850_#375_Campbell, International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 2018 🥚

Tree planting - layout

- Due to tree availability, two types of poplar and three types of willow used
 - Primarily prairie sky poplar and golden willow
- 17 trees selected to monitor health and growth
- On four occasions in 1st year:
 - Trees were watered and weeds controlled

Tree planting - layout

Results – fall 2014 monitoring

- Groundwater drawdown in the order of 1.5m in the centre of the planted area.
 - Inferred hydraulic control occurring
 - Further study required
- Hydrocarbons
 - Sheen detected
 - BTEX reduction 10 to 70%
 - PHC F1 and F2 fractions limited reduction
- Nutrient concentrations
 - Slight phosphorus increase
 - Slight reduction in ammonia and TOC
 - Low concentrations of NO₃

Tree evaluation – fall 2014

Tree Species	Control		Myke®			
	Condition	Height (m)	Dia. (mm)	Condition	Height (m)	Dia. (mm)
Contoneaster	n/a	n/a	n/a	Good	Min	n/a
Tower Popular	Excellent	1.0-1.7	13-23	Good	n/a	n/a
P. Sky Poplar	Good	2.3-2.5	23-52	Good	2.3-3.2	28-37
Golden Willow	Good	0.3-0.5	20-21	Excellent	1.3-2.2	17-30
Hybrid Willow	Excellent	3.1	30	Good	n/a	n/a
Laurel Leaf	n/a	n/a	n/a	Good	0.3	9

Note – Growth relative to initial measurements

Results – summer 2016 monitoring

- Groundwater drawdown in the order of 0.7m northern portion of planted area.
 - Overall 1m lower apparent GW table
 - Possible hydraulic effect
 - Hydraulic conductivity 10⁻⁴ to 10⁻⁵ cm/s
- Hydrocarbons
 - No sheen
 - BTEX reduction 30 to >95%
 - PHC F1/F2 fractions 80-90% reduction
- Nutrient concentrations
 - Slight phosphorus increase
 - Slight reduction in ammonia and TOC
 - No measurable NO₃
 - Increase in dissolved iron in impact area
 - Decrease in sulphate

Tree evaluation – summer 2016

Tree Species	Control			Myke®			
	Condition	Height (m)	Dia. (mm)	Condition	Height (m)	Dia. (mm)	
Contoneaster	n/a	n/a	n/a	Good	Min	shrubby	
Tower Popular	Fair-Good	>2-2.1	13-23 25-31	Good	n/a	n/a	
P. Sky Poplar	Good**	>3.1	78	Good	>3.3-4.3	58-61	
Golden Willow	Good**	1.3	25-31	Excellent	>3.7-3.17	26-32	
Hybrid Willow	Good	3.2	49	Good	n/a	n/a	
Laurel Leaf	n/a	n/a	n/a	**			

Note

• Growth relative to initial measurements

• * - One tree died

• > Height exceeded

Lessons learned to date

- Soil mixing:
 - Volatilized impacts and reduced 'hot spots'
 - Soil compaction reduced and amendment reasonably blended
 - Excavation and blending with a typical excavator (no blending tooling) was effective and locally available
- The Myke[®] treated trees:
 - Improved overall health, decreased mortality.
 - Increased height and breast diameter

Lessons learned to date

- Use of cotoneasters as a low growing tree species
 - Tree health is good
 - Trees planted near mature height
 - Suitable in locations with mature height limitations
 - Shrubby dense growth with flowering shoots
- Trees increased water demand appears to be providing a positive hydraulic effect at the site
- PHC concentrations in groundwater have decreased 30->95% based on the overall approach

Go forward plan - 2018

- Continued monitoring
- Reduce seasonality and monitor same month of year
- Additional off-site assessment wells required to evaluate zone of effect as trees mature
- Potentially complete a water demand assessment
- Photo catalogue of study trees
- Further subsurface assessment

woodplc.com